調399-(3)-1

第399回 地震調査委員会資料

※ 本資料中のデータについて

気象庁では、平成9年11月10日より、国・地方公共団体及び住民が一体となった緊急防災対応の迅速かつ円滑な実施 に資するため、気象庁の震度計の観測データに合わせて地方公共団体*及び国立研究開発法人防災科学技術研究所から 提供されたものも震度情報として発表している。

また、気象庁では、地震防災対策特別措置法の趣旨に沿って、平成9年10月1日より、大学や国立研究開発法人防災 科学技術研究所等の関係機関から地震観測データの提供を受け**、文部科学省と協力してこれを整理し、整理結果等を、 同法に基づいて設置された地震調査研究推進本部地震調査委員会に提供するとともに、気象業務の一環として防災情報 として適宜発表する等活用している。

- 注* 令和6年4月8日現在:北海道、青森県、岩手県、宮城県、秋田県、山形県、福島県、茨城県、栃木県、群馬県、埼玉県、 千葉県、東京都、神奈川県、新潟県、富山県、石川県、福井県、山梨県、長野県、岐阜県、静岡県、愛知県、三重県、滋賀 県、京都府、大阪府、兵庫県、奈良県、和歌山県、鳥取県、島根県、岡山県、広島県、山口県、徳島県、香川県、愛媛県、 高知県、福岡県、佐賀県、長崎県、熊本県、大分県、宮崎県、鹿児島県、沖縄県、札幌市(北海道)、仙台市(宮城県)、千 葉市(千葉県)、横浜市(神奈川県)、川崎市(神奈川県)、相模原市(神奈川県)、名古屋市(愛知県)、京都市(京都府) の47都道府県、8政令指定都市。
- 注** 令和6年4月8日現在:国立研究開発法人防災科学技術研究所、北海道大学、弘前大学、東北大学、東京大学、名古屋大 学、京都大学、高知大学、九州大学、鹿児島大学、国立研究開発法人産業技術総合研究所、国土地理院、国立研究開発法人 海洋研究開発機構、公益財団法人地震予知総合研究振興会、青森県、東京都、静岡県、神奈川県温泉地学研究所及び気象 庁のデータを用いて作成している。また、2016 年熊本地震合同観測グループのオンライン臨時観測点(河原、熊野座)、 2022 年能登半島における合同地震観測グループによるオンライン臨時観測点(よしが浦温泉、飯田小学校)、米国大学間地 震学研究連合(IRIS) の観測点(台北、玉峰、寧安橋、玉里、台東)のデータを用いて作成している。

※本資料中の図について

本資料中の地図は、『数値地図 25000 (行政界・海岸線)』(国土地理院)を加工して作成した。

また、一部の図版作成には GMT (Generic Mapping Tool[Wessel, P., and W. H. F. Smith, New, improved version of Generic Mapping Tools released, *EOS Trans. Amer. Geophys. U.*, vol. 79 (47), pp. 579, 1998])を使用した。

※ 本資料利用上の注意

・資料中の語句について

M:マグニチュード(通常、揺れの最大振幅から推定した気象庁マグニチュードだが、気象庁 CMT 解のモーメントマグニチュードの 場合がある。)

Mw:モーメントマグニチュード(特にことわりがない限り、気象庁 CMT 解のモーメントマグニチュードを表す。)

depth:深さ (km)

UND:マグニチュードの決まらない地震が含まれていることを意味する。

N= xx, yy/ZZ: 図中に表示している地震の回数を表す(通常図の右上に示してある)。ZZ は回数の総数を表し、xx, yy は期間別に表示色を変更している場合に、期間毎の回数を表す。

・発震機構解について

発震機構解の図は下半球投影である。また、特にことわりがない限り、P波初動による発震機構解である。初動発震機構解が求められない場合や、十分な精度が得られない場合には、初動発震機構解に替えてCMT 解を掲載する場合がある。

・発震機構解の図中の語句について

 P:P軸(圧力軸)
 T:T軸(張力軸)
 N:N軸(中立軸)

・Global CMT 解について

Global CMT 解は、米国のコロンビア大学とハーバード大学で行っている、世界で発生した規模の大きな地震の CMT 解を求めるプロジェクト(Global CMT Project)により求められた解である。

M-T図について

縦軸にマグニチュード(M)、横軸に時間(T)を表示した図で、地震活動の経過を見るために用いる。

・震央地名について

本資料での震央地名は、原則として情報発表時に使用したものを用いるが、震央を精査した結果により、情報発表時とは異なる 震央地名を用いる場合がある。なお、情報発表時の震央地名及びその領域については、各年の「地震・火山月報(防災編)」1月号 の付録「地震・火山月報(防災編)で用いる震央地名」を参照のこと。

・震源と震央について

震源とは地震の発生原因である地球内部の岩石の破壊が開始した点であり、震源の真上の地点を震央という。

・地震の震源要素等について

2016年4月1日以降の震源では、Mの小さな地震は、自動処理による震源を表示している場合がある。自動処理による震源は、 震源誤差の大きなものが表示されることがある。

2020 年9月以降に発生した地震を含む図については、2020 年8月以前までに発生した地震のみによる図と比較して、日本海溝 海底地震津波観測網(S-net)や紀伊水道沖の地震・津波観測監視システム(DONET2)による海域観測網の観測データの活用、震源 計算処理における海域速度構造の導入及び標高を考慮した震源決定等それまでのデータ処理方法との違いにより、震源の位置や決 定数に見かけ上の変化がみられることがある。

震源の深さを「CMT 解による」とした場合は、気象庁 CMT 解のセントロイドの深さを用いている。

地震の震源要素、発震機構解、震度データ等は、再調査後、修正することがある。確定した値、算出方法については地震月報(カタログ編) [気象庁ホームページ: <u>https://www.data.jma.go.jp/eqev/data/bulletin/index.html</u>]に掲載する。

なお、本誌で使用している震源位置・マグニチュードは世界測地系 (Japanese Geodetic Datum 2000) に基づいて計算したものである。

・火山の活動解説の火山性地震回数等について

火山性地震や火山性微動の回数等は、再調査後、修正することがある。確定した値については、火山月報(カタログ編)[気象庁 ホームページ: <u>https://www.data.jma.go.jp/vois/data/tokyo/STOCK/bulletin/index_vcatalog.html</u>]に掲載する。

別紙 1

令和6年3月の主な地震活動^{注1)}

番号	月日	時 分	震央地名	深さ (km)	М	Mw	最大 震度	備考/コメント
	3月1日	05時43分	千葉県東方沖	31	5.3	5.2	4	2月26日から続く千葉県東方沖の地震活 動
1	3月2日	01時49分	千葉県南部	26	5. 0	4. 9	4	3月中に震度1以上を観測する地震が35 回(震度4:3回、震度3:4回、震度 2:12回、震度1:16回)発生した 3月中の最大規模の地震は、1日05時43
	3月9日	04時26分	千葉県東方沖	28	4.4	-	4	分に発生したM5.3の地震(最大震度4) フィリピン海プレートと陸のプレートの 境界で発生した地震
2	3月2日	23時00分	宮崎県北部平野部	13	4. 3	-	4	地殻内で発生した地震
3	3月13日	20時24分	福島県沖	51	4. 7	4. 6	4	緊急地震速報(警報)発表 (3月15日00 時14分の地震に対して発表) 長周期地震動階級1を観測(3月15日00 時14分の地震により観測)
5	3月15日	00時14分	福島県沖	50	5.8	5.6	5弱	太平洋プレートと陸のプレートの境界で 発生した地震 軽傷:4人(3月22日17時00分現在、総 務省消防庁による)
4	3月15日	19時32分	奄美大島近海	19 ^{注2)}	5.6	5. 7	4	
5	3月17日	06時17分	福島県沖	44	5. 4	5. 3	4	太平洋プレートと陸のプレートの境界で 発生した地震
6	3月21日	09時08分	茨城県南部	46	5. 3	5. 2	5弱	緊急地震速報(警報)発表 フィリピン海プレートと陸のプレートの 境界で発生した地震
7	3月23日	08時31分	岐阜県美濃中西部	14	4. 6	-	4	地殻内で発生した地震
8			「令和6年能登半島地震」 の地震活動				3	「令和6年能登半島地震」の地震活動 2024年3月中に震度1以上を観測する地 震が70回(震度3:4回、震度2:17 回、震度1:49回)発生した 3月中の最大規模の地震は、4日17時31 分に発生したM4.4の地震(最大震度3) 地殻内で発生した地震

注1)「主な地震活動」とは、①震度4以上の地震、②M6.0以上の地震、③陸域でM4.5以上かつ震度3以上の地震、 ④海域でM5.0以上かつ震度3以上の地震、⑤前に取り上げた地震活動で活動が継続しているもの、⑥その他、 注目すべき活動。なお、掲載した震源要素については、後日修正されることがある。

注2)気象庁のCMT解による。

期間	外の活動 ^注	3)						
番号	月日	時分	震央地名	深さ (km)	М	Μw	最大 震度	備考/コメント
1	4月2日	04時24分	岩手県沿岸北部	71	6.0	5.9	5弱	緊急地震速報(警報)発表 長周期地震動階級 2 を観測 太平洋プレート内部で発生した地震
2	4月3日	08時58分	台湾付近	23	7.7	7.4	4	津波警報発表 津波観測:与那国島久部良、宮古島平良 ^注 ⁴ で0.3m ^{注5} の津波を観測 緊急地震速報(警報)発表 長周期地震動階級1を観測 軽傷:日本国内で2人(2024年4月5日 現在、総務省消防庁による)
3	4月8日	10時25分	大隅半島東方沖	39	5. 1		5弱	緊急地震速報(警報)発表

注3)注1)の主な地震活動の基準に該当する地震で令和6年4月中に発生したもの。

注4) 国土交通省港湾局の観測施設である。

注5)津波の観測値は後日の精査により変更される場合がある。

・3月15日に福島県沖でM5.8の地震(最大震度5弱)が発生した。

・3月21日に茨城県南部でM5.3の地震(最大震度5弱)が発生した。

(上記期間外)

- ・4月2日に岩手県沿岸北部でM6.0の地震(最大震度5弱)が発生した。
- ・4月3日に台湾付近でM7.7の地震(日本国内で観測された最大の揺れは震度4)が発生した。
- ・4月8日に大隅半島東方沖でM5.1の地震(最大震度5弱)が発生した。

[図中に日時分、マグニチュードを付した地震はM5.0以上の地震、またはM4.0以上で最大震度5弱以上を観測した地震である。 また、上に表記した地震はM6.0以上、またはM4.0以上で最大震度5弱以上を観測した地震である。]

気象庁・文部科学省(気象庁作成資料には、防災科学技術研究所や大学等関係機関のデータも使われています)

次ページ以降、資料中に発震機構が示されている場合は、特段の断りがない限り「P波初動解」を示す。

北海道地方

2024/03/01 00:00 ~ 2024/03/31 24:00

地形データは日本海洋データセンターの J-EGG500、米国地質調査所の GTOP030 及び米国国立地球物理データセンターの ETOP02v2 を使用

特に目立った地震活動はなかった。

[[]上述の地震は M6.0 以上または最大震度4以上、陸域で M4.5 以上かつ最大震度3以上、海域で M5.0 以上かつ最大震度3以上、その他、注目すべき活動のいずれかに該当する地震。]

気象庁作成

7

地形データは日本海洋データセンターの J-EGG500、米国地質調査所の GTOP030 及び米国国立地球物理データセンターの ETOP02v2 を使用

- 3月13日に福島県沖でM4.7の地震(最大震度4)が、3月15日にはM5.8の地震(最 大震度5弱)が発生した。
- ② 3月17日に福島県沖でM5.4の地震(最大震度4)が発生した。

※で示した地震については関東・中部地方の資料を参照。

(上記期間外)

4月2日に岩手県沿岸北部で M6.0 の地震(最大震度5弱)が発生した。

[[]上述の地震は M6.0 以上または最大震度 4 以上、陸域で M4.5 以上かつ最大震度 3 以上、海域で M5.0 以上かつ最大震度 3 以上、その 他、注目すべき活動のいずれかに該当する地震。]

(M≥1.0、陸域 深さ30km 以浅、海域 深さ60km 以浅) ____50km 0000 °°, 40° N 38° N 7.0 6.0 5.0 4.0 3.0 2.0 1.0 138°E 140°E 142°E ○:当月に発生した地震 ○:過去3年間に発生した地震

東北地方における 2024 年3月の地震活動

福島県沖の地震

2024年3月15日00時14分に福島県沖の深さ 50kmでM5.8の地震(最大震度5弱)が発生した。 この地震により軽傷4人の被害が生じた(3月22 日現在、総務省消防庁による)。この地震の発震 機構(CMT解)は西北西-東南東方向に圧力軸を 持つ逆断層型で、太平洋プレートと陸のプレート の境界で発生した。

また、この地震の震源近傍では、13日20時24分 にもM4.7(深さ51km、最大震度4)の地震が発生 した。この地震の発震機構(CMT解)は東西方向に 圧力軸を持つ型で、太平洋プレートと陸のプレー トの境界で発生した。

1997年10月以降の活動をみると、今回の地震の 震源付近(領域b)では「平成23年(2011) 年)東北地方太平洋沖地震」(以下、東北地方太平 洋沖地震)の発生以降、地震活動が活発で、M5.0 以上の地震が時々発生している。

1919年以降の活動をみると、今回の地震の震央 周辺(領域 c)では、1938年11月5日17時43分に M7.5の地震が発生し、宮城県花淵で113cm(全振 幅)の津波を観測した。この地震の発生後、地震 活動が活発となり、同年11月30日までにM6.0以上 の地震が25回発生した。これらの地震により、死 者1人、負傷者9人、住家全壊4棟、半壊29棟な どの被害が生じた(「日本被害地震総覧」による)。

3月13日、15日の福島県沖の地震(相似地震)

福島県沖で発生した2024年3月13日(M4.7、最大震度4)、15日(M5.8、最大震度5弱)の地震について、 強震波形による相関解析を行った結果、既往の相似地震グループの最新の相似地震として検出された(グループC、F)※1。

3

	<i>ド</i> ル プ	同粉	₩+/5 M	震	震度		発生間隔		平均すべり量
	<i>9n</i> - <i>9</i>	回致	平均W	最大	最小	平均	最短	最大	(cm/年)—
	★ A	21	4.53	А	2	1.64	0.00	9.66	21.82
	B	2	4.80	3	2	0.73	0.73	0.73	51.43
3月15日	→ C	6	5.78	А	4	5.37	2.21	8.45	14.14
M5.8	🔶 D	2	4.35	3	3	0.13	0.13	0.13	231.20
	V E	2	4.30	3	3	6.50	6.50	6.50	4.32
3月13日	_ F	5	4.44	4	3	3.36	0.87	8.51	7.38
M4.7	G	9	4.01	3	3	1.89	0.78	3.85	14.32
	📥 Н	3	4.07	3	3	1.32	0.70	1.94	18.63

発生間隔と推定年平均すべり量^{※2}

各観測点の波形の比較で得られたコヒーレンスの中央値が0.95以上の場合に相似地震として検出し、相似地震のグループ分けはコヒーレンスを用いて機械的に行っている[溜渕ほか、2014]。 ×1 ※2 すべり量推定には、モーメントマグニチュードと地震モーメントの関係式[Hanks and Kanamori(1979)]及び 地震モーメントとすべり量の関係式[Nadeau and Johnson(1998)]を使用。得られた積算すべり量と経過時間 から最小自乗法を用いてグループ毎の年平均すべり量を求めた。 気 安 庁 イ 気象庁作成

3月17日 福島県沖の地震

震央分布図 (1997年10月1日~2024年3月31日、 深さ0~140km、M≧2.5) ○1997年10月1日~2011年2月28日 ○2011年3月1日~2024年2月29日 ○2024年3月1日以降 図中の発震機構はCMT解を示す

2024年3月17日06時17分に福島県沖の深さ 44kmでM5.4の地震(最大震度4)が発生した。 この地震の発震機構(CMT解)は西北西-東南東 方向に圧力軸を持つ逆断層型で、太平洋プレー トと陸のプレートの境界で発生した。

1997年10月以降の活動をみると、今回の地震 の震源付近(領域b)では「平成23年(2011 年)東北地方太平洋沖地震」(以下、東北地方太 平洋沖地震)の発生以降、地震活動が活発で、 M5.0以上の地震が時々発生している。

1919年以降の活動をみると、今回の地震の震央 周辺(領域 c)では、1938年11月5日17時43分に M7.5の地震が発生し、宮城県花淵で113cm(全振 幅)の津波を観測した。この地震の発生後、地震 活動が活発となり、同年11月30日までにM6.0以 上の地震が25回発生した。これらの地震により、 死者1人、負傷者9人、住家全壊4棟、半壊29棟 などの被害が生じた(「日本被害地震総覧」によ る)。

3月17日の福島県沖の地震(付近の相似地震分布)

3月13日、15日、17日の福島県沖の地震(相似地震とその周辺の地震活動)

14

気象庁作成

4月2日 岩手県沿岸北部の地震

2024年4月2日04時24分に岩手県沿岸北部 の深さ71kmでM6.0の地震(最大震度5弱)が発 生した。この地震は太平洋プレート内部(二重 地震面の上面)で発生した。発震機構(CMT解) は太平洋プレートが沈み込む方向に圧力軸を 持つ型である。

1997年10月以降の活動をみると、今回の地 震の震源付近(領域b)はM5~6程度の地震 が時々発生しているところで、2015年7月10 日のM5.7の地震(最大震度5弱)では負傷者2 人の被害が生じた(総務省消防庁による)。

1919年以降の活動をみると、今回の地震の 震央周辺(領域 c)では、M6を超える地震 が時々発生しており、2008年7月24日には深 さ108kmでM6.8の地震(最大震度6弱)が発生 した。この地震により死者1人、負傷者211 人、住家全壊1棟、一部破損379棟などの被害 が生じた(総務省消防庁による)。

2024年4月2日04時24分 岩手県沿岸北部の地震(各機関のMT解)

	気象庁CMT	防災科研 (F-net)	USGS (W-pahse)	
一元化震源 M6.0 深さ71km	W- W- N	·	P T (210, 61, 60)	4)
Mw	s 5.9	5.9	US 5.88 深さ	GS震源 572.9km
深さ	62km	71km	50.5km	
	Global CMT	GEOFON		-
Mw	5.9	5.9		
深さ	86.1km	75km		_
	防災科研(F-net): htt	ps://www.fnet.bosai.go.jj	p/event/joho.php?LANG=ja	

防災科研(F-net): https://www.tnet.bosai.go.jp/event/joho.php?LANG=ja USGS(W-phase): https://earthquake.usgs.gov/earthquakes/map/ Global CMT: https://www.globalcmt.org/CMTsearch.html GEOFON MT: https://geofon.gfz-potsdam.de/eqinfo/list.php?mode=mt 防災科研(AQUA): https://www.hinet.bosai.go.jp/AQUA/aqua_catalogue.php?LANG=ja

防災科研(AQUA)

地形データは日本海洋データセンターの J-EGG500、米国地質調査所の GTOP030 及び米国国立地球物理データセンターの ETOP02v2 を使用

- 「令和6年能登半島地震」の地震活動域では、3月中に震度1以上を観測した地震が 70回(震度3:4回、震度2:17回、震度1:49回)発生した。このうち最大規模の地震は、4日に能登半島沖で発生したM4.4の地震(最大震度3)である。
- ② 2月26日から千葉県東方沖を中心に地震活動が活発になり、3月31日までに震度1 以上を観測した地震が48回(震度4:4回、震度3:7回、震度2:15回、震度1: 22回)発生した。3月中の最大規模の地震は、1日に千葉県東方沖で発生したM5.3 の地震(最大震度4)である。
- ③ 3月21日に茨城県南部でM5.3の地震(最大震度5弱)が発生した。
- ④ 3月23日に岐阜県美濃中西部でM4.6の地震(最大震度4)が発生した。

※で示した地震については東北地方の資料を参照。

気象庁·文部科学省

[[]上述の地震は M6.0 以上または最大震度4以上、陸域で M4.5 以上かつ最大震度3以上、海域で M5.0 以上かつ最大震度3以上、その 他、注目すべき活動のいずれかに該当する地震。]

関東・中部地方における 2024 年 3 月の地震活動 (M≧1.0、陸域 深さ 30km 以浅、海域 深さ 60km 以浅)

O :	当月に発生した地震
O :	過去3年間に発生した地震

「令和6年能登半島地震」の地震活動

2024年1月1日16時10分に石川県能登地方の 深さ16kmでM7.6(最大震度7)の地震が発生し た。この地震発生直前の16時06分にM5.5(最大 震度5強)の地震が、またM7.6の地震発生直後の 16時12分にM5.7(最大震度6弱)、16時18分に M6.1(最大震度5強)の地震が発生するなど、活 発な地震活動となった。

今回の地震の活動域は、能登半島及びその北東 側の海域を中心とする北東-南西に延びる 150km 程度の範囲に広がっている。M7.6の地震の発震機 構(CMT 解)は北西-南東方向に圧力軸を持つ逆 断層型である。

M7.6の地震により、石川県の金沢^(注1)で80cm、 山形県の酒田^(注2)で0.8mなど、北海道から九州 地方にかけて、日本海沿岸を中心に広い範囲で津 波を観測した。また、現地調査の結果、新潟県上 越市船見公園で5.8m(遡上高)などの津波による 痕跡が認められた。

能登半島では 2020 年 12 月から地震活動が活発 になっており、2023 年 5 月 5 日には M6.5 の地震 (最大震度 6 強)が発生していた。

2024 年3月中の最大規模の地震は、4日17時 31 分に発生した M4.4 の地震(最大震度3)であった。地震の発生数は増減を繰り返しながら大局的には緩やかに減少してきているが、3月中に震度1以上を観測した地震が70回発生するなど活発な状態が続いている。

(注2) 巨大津波観測計による観測のため、観測単位は0.1m

領域 a 内のM-T図及び回数積算図 (2020 年 12 月以降)

気象庁作成

「令和6年能登半島地震」の最大震度別地震回数表

令和2年12月1日00時~令和6年4月8日08時、震度1以上 (注)掲載している値は速報のもので、その後の調査で変更する場合がある。

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$								備考				
	1	2	3	4	5弱	5強	6弱	6強	7	回数	累計	
1/1	131	134	66	19	4	4	1	0	1	360	360	
1/2	266	98	37	8	1	1	0	0	0	411	771	
1/3	116	39	16	4	0	2	0	0	0	177	948	
1/4	60	17	5	3	0	0	0	0	0	85	1033	
1/5	57	19	9	1	0	0	0	0	0	86	1119	
1/6	37	13	3	1	0	1	1	0	0	56	1175	
1/7	19	11	3	3	0	0	0	0	0	36	1211	
1/8	19	11	1	0	0	0	0	0	0	31	1242	
1/9	25	4	2	0	1	0	0	0	0	32	1274	
1/10	30	3	2	0	0	0	0	0	0	35	1309	
1/11	13	5	2	0	0	0	0	0	0	20	1329	
1/12	21	2	2	1	0	0	0	0	0	26	1355	
1/13	14	3	1	1	0	0	0	0	0	18	13/3	
1/14	15	4	1	0	0	0	0	0	0	20	1393	
1/15	0 10	/	1	1	1	0	0	0	0	12	1400	
1/10	13	0 1	1	1	1	0	0	0	0	21	1420	
1/1/	9	1	1	0	0	0	0	0	0	11	143/	
1/18	12	2	2	2	0	0	0	0	0	10	1/167	
1/19	12	1	2	2	0	0	0	0	0	19	1407	
1/20	5	1	0	0	0	0	0	0	0	5	1/182	
1/21	8	2	1	0	0	0	0	0	0	11	1402	
1/22	5	1	2	0	0	0	0	0	0	0	1493	
1/23	2	1	1	0	0	0	0	0	0	0	1505	
1/25		3	0	0	0	0	0	0	0	6	1511	
1/26	8	0	1	1	0	0	0	0	0	10	1521	
1/27	6	1	0	0	0	0	0	0	0	7	1528	
1/28	6	0	0	0	0	0	0	0	0	6	1534	
1/29	8	0	0	0	0	0	0	0	0	8	1542	
1/30	7	2	1	0	0	0	0	0	0	10	1552	
1/31	4	2	0	0	0	0	0	0	0	6	1558	
2/1	9	2	2	0	0	0	0	0	0	13	1571	
2/2	3	1	1	0	0	0	0	0	0	5	1576	
2/3	4	2	0	0	0	0	0	0	0	6	1582	
2/4	4	1	1	0	0	0	0	0	0	6	1588	
2/5	2	3	0	0	0	0	0	0	0	5	1593	
2/6	0	1	1	0	0	0	0	0	0	2	1595	
2/7	6	1	0	1	0	0	0	0	0	8	1603	
2/8	5	1	0	0	0	0	0	0	0	6	1609	
2/9	4	1	0	0	0	0	0	0	0	5	1614	
2/10	2	5	0	0	0	0	0	0	0	7	1621	
2/11	1	4	0	1	0	0	0	0	0	6	1627	
2/12	4	2	0	0	0	0	0	0	0	6	1633	
2/13	1	0	0	0	0	0	0	0	0	1	1634	
2/14	6	1	0	1	0	0	0	0	0	8	1642	
2/15	3	2	2	0	0	0	0	0	0	/	1649	
2/16	3	2	0	0	0	0	0	0	0	5	1654	
2/17	2	1	1	0	0	0	0	0	0	4	1008	
2/18	4	2	0	0	0	0	0	0	0	0	1667	
2/19	<u>კ</u>	1	0	0	0	0	0	0	0	3	1671	
2/20	<u>კ</u>	1	1	0	0	0	0	0	0	4	1675	
2/21	1	0	1	0	0	0	0	0	0	4	1676	
2/22	1	0	0	0	0	0	0	0	0	1	1676	
2/23	0	0	0	0	0	0	0	0	0	0	1676	
2/24	1	0	0	0	0	0	0	0	0	0	1690	
Z/Z0	4	U	U	U	0	0	U	U	U	4	1000	

2/26	3	0	0	0	0	0	0	0	0	3	1683	
2/27	8	0	2	0	0	0	0	0	0	10	1693	
2/28	5	0	1	0	0	0	0	0	0	6	1699	
2/29	3	0	0	0	0	0	0	0	0	3	1702	
3/1	1	1	0	0	0	0	0	0	0	2	1704	
3/2	2	0	0	0	0	0	0	0	0	2	1706	
3/3	5	0	0	0	0	0	0	0	0	5	1711	
3/4	0	4	1	0	0	0	0	0	0	5	1716	
3/5	3	1	0	0	0	0	0	0	0	4	1720	
3/6	2	0	0	0	0	0	0	0	0	2	1722	
3/7	3	0	1	0	0	0	0	0	0	4	1726	
3/8	1	1	0	0	0	0	0	0	0	2	1/28	
3/9	2	1	0	0	0	0	0	0	0	3	1/31	
3/10	0	0	0	0	0	0	0	0	0	0	1/31	
3/11	3	0	0	0	0	0	0	0	0	3	1/34	
3/12	1	0	0	0	0	0	0	0	0	1	1/35	
3/13	1	0	1	0	0	0	0	0	0	2	1/3/	
3/14	4	2	0	0	0	0	0	0	0	6	1/43	
3/15	1	1	0	0	0	0	0	0	0	2	1/45	
3/16	2	1	0	0	0	0	0	0	0	3	1748	
3/17	0	0	0	0	0	0	0	0	0	0	1748	
3/18	1	0	0	0	0	0	0	0	0	1	1749	
3/19	2	0	0	0	0	0	0	0	0	2	1751	
3/20	1	0	0	0	0	0	0	0	0	1	1752	
3/21	0	0	0	0	0	0	0	0	0	0	1752	
3/22	1	0	0	0	0	0	0	0	0	1	1753	
3/23	2	1	0	0	0	0	0	0	0	3	1756	
3/24	2	0	1	0	0	0	0	0	0	3	1759	
3/25	2	1	0	0	0	0	0	0	0	3	1762	
3/26	2	0	0	0	0	0	0	0	0	2	1764	
3/27	1	0	0	0	0	0	0	0	0	1	1765	
3/28	1	0	0	0	0	0	0	0	0	1	1766	
3/29	1	1	0	0	0	0	0	0	0	2	1768	
3/30	1	1	0	0	0	0	0	0	0	2	1770	
3/31	1	1	0	0	0	0	0	0	0	2	1772	
4/1	0	0	0	0	0	0	0	0	0	0	1772	
4/2	1	1	1	0	0	0	0	0	0	3	1775	
4/3	0	0	1	0	0	0	0	0	0	1	1776	
4/4	0	0	0	0	0	0	0	0	0	0	1776	
4/5	1	0	0	0	0	0	0	0	0	1	1777	
 4/6	1	0	0	0	0	0	0	0	0	1	1778	
 4/0	2	0	0	0	0	0	0	0	0	2	1780	
 4/ /	2	0	0	0	0	0	0	0	0	2	1790	0.8時時占
4/0 総計(1日1日~)	1000	117	177	10	- 0 7	0	2	0	1	0	1700	0047 FJ W
	1030	+++/	1//	40		0		0			1700	1

[【]令和2(2020)年12月~令和5(2023)年12月の発生回数(月別)】

【令和2(2020)年12月以降の発生回数(年別)】

年別			튴	曼大 震	夏度別	间回数	τ			震度1 観測し	以上を た回数	備考
	1	2	3	4	5弱	5強	6弱	6強	7	回数	累計	
2020/12/1 - 12/31	0	0	0	0	0	0	0	0	0	0	0	
2021/1/1 - 12/31	39	19	10	1	1	0	0	0	0	70	70	
2022/1/1 - 12/31	130	39	18	6	0	1	1	0	0	195	265	
2023/1/1 - 12/31	151	61	21	6	0	1	0	1	0	241	506	
総計(2020~2023)	320	119	49	13	1	2	1	1	0		506	
2020~2023	320	119	49	13	1	2	1	1	0	506	506	
2024/1/1 - 31	941	395	159	45	7	8	2	0	1	1558	2064	
2024/2/1 - 29	95	34	12	3	0	0	0	0	0	144	2208	
2024/3/1 - 31	49	17	4	0	0	0	0	0	0	70	2278	
2024/4/1 -	5	1	2	0	0	0	0	0	0	8	2286	
総計(2020/12/1~)	1410	566	226	61	8	10	3	1	1		2286	

※2024/1/1以降は領域を広げてカウントしている。

令和6年能登半島地震の地震活動(M7.6発生後の地震活動の状況)

気象庁作成

「令和6年能登半島地震」(2020年12月から活発化した活動域におけるM7.6発生前後の地震活動比較)

陸のプレート内で発生した過去の大地震との活動比較(6か月間)

2024年2月26日からの千葉県東方沖の地震活動

2024年2月26日23時頃から千葉県東方沖を中心に地 震活動が活発となり、3月31日までに震度1以上を観測 した地震が48回(震度4:4回、震度3:7回、震度2: 15回、震度1:22回)発生した。このうち最大規模の地 震は、3月1日05時43分に深さ31kmで発生したM5.3 の地震(最大震度4、地震①)で、このほかに最大震度4 を観測した地震は、2月29日18時35分に発生したM4.9 の地震(地震②)、3月2日01時49分に発生したM5.0の 地震(地震③)及び3月9日04時26分に発生したM4.4 の地震(地震④)である。地震①~③の発震機構(CMT解) はいずれも北北西-南南東方向に圧力軸を持つ逆断層型 で、フィリピン海プレートと陸のプレートの境界で発生 した。

今回の地震活動は、プレート境界で発生したゆっくり すべり(国土地理院及び防災科学技術研究所による)に伴 うものである。

今回の地震活動の震源付近(領域b)では、1996年、 2002年、2007年、2011年、2014年及び2018年にもプレ ート境界でゆっくりすべりとまとまった地震活動が同期 して発生した(国土地理院及び防災科学技術研究所によ る)。

1919年以降の活動をみると、今回の地震の震央周辺(領域 c) では、M6.0以上の地震が時々発生しており、1987年12月17日にフィリピン海プレート内部で発生したM6.7の地震(最大震度 5)では、死者 2人、負傷者161人、住家全壊16棟、半壊102棟、一部破損72,580棟などの被害が生じた(被害は「日本被害地震総覧」による)。

千葉県東方沖の地震活動の最大震度別地震回数表

令和6年2月26日00時~令和6年4月8日08時、震度1以上 (注)掲載している値は速報のもので、その後の調査で変更する場合がある。

日別			튴	曼大 震	夏度另	回数	ξ			震度1 観測し	以上をたい	
	1	2	3	4	5弱	5強	6弱	6強	7	回数	累計	
2/26	0	0	0	0	0	0	0	0	0	0	0	
2/27	0	1	0	0	0	0	0	0	0	1	1	
2/28	2	0	0	0	0	0	0	0	0	2	3	
2/29	4	2	3	1	0	0	0	0	0	10	13	
3/1	2	3	0	1	0	0	0	0	0	6	19	
3/2	2	5	2	1	0	0	0	0	0	10	29	
3/3	3	0	0	0	0	0	0	0	0	3	32	
3/4	0	0	0	0	0	0	0	0	0	0	32	-
3/5	3	1	0	0	0	0	0	0	0	4	36	-
3/6	0	0	1	0	0	0	0	0	0	1	37	_
3/7	0	0	0	0	0	0	0	0	0	0	37	1_
3/8	1	1	0	0	0	0	0	0	0	2	39	
3/9	0	1	0	1	0	0	0	0	0	2	41	L
3/10	1	0	0	0	0	0	0	0	0	1	42	-
3/11	0	0	1	0	0	0	0	0	0	1	42	-
3/12	0	0	1	0	0	0	0	0	0	<u> </u>	43	-
3/13	0	0	0	0	0	0	0	0	0	0	43	-
3/14	0	0	0	0	0	0	0	0	0	0	43	-
3/15	0	0	0	0	0	0	0	0	0	0	43	-
3/10	2	0	0	0	0	0	0	0	0	2	43	-
3/18	0	0	0	0	0	0	0	0	0	0	45	ŀ
3/10	0	0	0	0	0	0	0	0	0	0	45	1
3/20	1	0	0	0	0	0	0	0	0	1	46	1
3/21	1	Ő	Ő	0	Ő	Ő	Ő	0	0	1	47	t
3/22	0	0	0	0	0	0	Ő	0	0	0	47	ŀ
3/23	0	1	0	0	0	Ő	0	0	0	1	48	T
3/24	0	0	0	0	0	0	0	0	0	0	48	ľ
3/25	0	0	0	0	0	0	0	0	0	0	48	1
3/26	0	0	0	0	0	0	0	0	0	0	48	
3/27	0	0	0	0	0	0	0	0	0	0	48	I
3/28	0	0	0	0	0	0	0	0	0	0	48	
3/29	0	0	0	0	0	0	0	0	0	0	48	Ĺ
3/30	0	0	0	0	0	0	0	0	0	0	48	Ĺ
3/31	0	0	0	0	0	0	0	0	0	0	48	
4/1	0	0	0	0	0	0	0	0	0	0	48	
4/2	0	0	0	0	0	0	0	0	0	0	48	L
4/3	1	0	1	0	0	0	0	0	0	2	50	L
4/4	0	0	0	0	0	0	0	0	0	0	50	L
4/5	0	0	0	0	0	0	0	0	0	0	50	L
4/6	1	0	0	0	0	0	0	0	0	1	51	L
4/7	0	0	0	0	0	0	0	0	0	0	51	
4/8	0	0	0	0	0	0	0	0	0	0	51	0

気象庁作成

2024年2月26日からの千葉県東方沖の地震活動

千葉県東方沖の過去の地震活動(各活動の3か月間の推移)

気象庁作成

合計

31

37

千葉県東方沖の過去の地震活動(各活動の3か月間の推移)

気象庁作成

千葉県東方沖の地震活動とGNSS時系列変化

2024年

Feb

Mai

○左図のGNSS時系列図

GNSS観測点:長生、千葉大原(下図赤枠)

(2024年4月8日国土地理院報道発表資料から引用し、加工)

房総半島での非定常的な地殻変動(暫定)

○左図のMT図および回数積算図

- ・MT図は、矩形領域を海側と陸側に分け て、海側を赤、陸側を青で表示。
- ・回数積算図は、全体(海側+陸側)、 海側、陸側に分けて表示。

左図の赤点線は、地震活動の活発化が始まった時期を示す。

800

600

- 400

200

Apr

(気象庁作成)

(気象庁作成)

(気象庁作成)

2024年2月26日からの千葉県東方沖の地震活動(今回及び2018年の地震活動の非定常ETAS)

今回、及び、参考に2018年の地震活動について非定常ETAS解析を行った。µ、K₀の初期値及びa、c、pは、ゆっくりすべりに伴う地震活動が 観測されていない2019年1月1日~2024年2月25日の震源データ(断面図中の矩形内)を用いて定常ETAS解析により求めた。

2024年2月26日からの千葉県東方沖の地震活動 (今回の活動の約5か月前からの地震活動)

37

気象庁作成

2月26日からの千葉県東方沖の地震活動(相似地震)

2024年2月26日からの千葉県東方沖の地震活動について、強震波形による相関解析を行った結果、 今回の地震活動のうち4地震が検出された(グループA、B、D、E)^{※1}。

38

2024年2月26日からの千葉県東方沖の地震活動(相似地震と、ゆっくりすべりを伴った地震活動の位置関係)

今回検出された 相似地震の震源リスト (年月日時分、M)

・赤枠:ゆっくりすべりを伴った地震活動の期間に発生した地震
 ・赤矢印:今回の地震活動

 ★ グループA M(×0.1)

🟋 クループA	M (X(
J200708160415	53
J202403010543	53
● グループB	
J200708160820	49
J202402291835	49
▲ ガループ0	
770 - 70	45
J201806261946	43
	10
● クルーフロ	
J200708160747	44
J202402291113	46
▼ グループE	
J200708160922	47
J202402291627	46
💧 グループF	
J200810141237	43
J202002201253	43
■ グループG	
J200503121401	40
J201504072033	35
人 ガループH	
J200810121004	12
T201401072211	38
J202212190002	11
	41
	0.0
120150520207	36
	34
🔭 グループJ	
J201606021836	37
J201606022234	35

相似地震が検出された地震活動を示す。

2024年2月26日からの千葉県東方沖の地震活動(今回及び2007年の地震活動における相似地震)

2024年3月21日09時08分に茨城県南部 の深さ46kmでM5.3の地震(最大震度5弱) が発生した。この地震は、発震機構が北西-南東方向に圧力軸を持つ逆断層型で、フィリ ピン海プレートと陸のプレートの境界で発

1997年10月以降の活動をみると、今回の 地震の震源付近(領域b)は活動が活発な領 域で、「平成23年(2011年)東北地方太平洋 沖地震」発生以降、地震活動がより活発にな った。2014年9月16日にM5.6の地震(最大 震度5弱)が発生し、負傷者10人、住家一部 破損1,060棟などの被害を生じた(総務省消

1919年以降の活動をみると、今回の地震の 震央周辺(領域 c)では、M6.0以上の地震が

2000 東北地方太平洋沖地震発生 1500 1000 500 2015 2020 (2024年3月1日~31日、M≧1.0) 領域c内のM-T図 N=143 7.0 0 6.0 depth (km) 0 1921年12月8日 1985年10月4日 M6.0 M6.8 〇 120 1920 1930 1940 1950 1960 1970 1980 1990 2000 2010 2020

140°.30

5.0

35° 30'

1.39°.30

140° E

42

観測点名:土浦市大岩田(516) 2012/06/01 17:48:08 M5.1-----2024/03/21 09:08:03 M5.3-----

3月21日の茨城県南部の地震(相似地震とその周辺の地震活動)

43

3月23日 岐阜県美濃中西部の地震

※宇津徳治,日本付近のM6.0以上の地震及び被害地震の表:1885年~1980年,震研彙報,56,401-463,1982. 宇津徳治,日本付近のM6.0以上の地震及び被害地震の表:1885年~1980年(訂正と追加),震研彙報,60,639-642,1985. 茅野一郎・宇津徳治,日本の主な地震の表,「地震の事典」第2版,朝倉書店,2001,657pp.

3月23日 岐阜県美濃中西部の地震

地形データは日本海洋データセンターの J-EGG500、米国地質調査所の GTOP030 及び米国国立地球物理データセンターの ETOP02v2 を使用

特に目立った地震活動はなかった。

※1で示した地震については関東・中部地方の資料を参照。 ※2で示した地震については九州地方の資料を参照。

[[]上述の地震は M6.0 以上または最大震度 4 以上、陸域で M4.5 以上かつ最大震度 3 以上、海域で M5.0 以上かつ最大震度 3 以上、その 他、注目すべき活動のいずれかに該当する地震。]

近畿・中国・四国地方における 2024 年3月の地震活動

(M≧1.0、陸域 深さ30km以浅、海域 深さ60km以浅)

O :	当月に発生した地震
O :	過去3年間に発生した地震

四国中部の深部低周波地震(微動)活動と短期的ゆっくりすべり

3月22日以降、四国中部で深部低周波地震(微動)を観測している。

深部低周波地震(微動)活動とほぼ同期して、周辺に設置されている複数のひずみ・傾斜計で地殻 変動を観測している。これらは、短期的ゆっくりすべりに起因すると推定される。

深部低周波地震(微動)活動

※2024年4月4日の震源要素は、今後の精査で変更する場合がある。

四国中部で観測した短期的ゆっくりすべり(3月23日~25日)

り域が求まった。

断層モデルの推定は、産総研の解析方法(板場ほか,2012)を参考に以下の2段階で行う。 ・断層サイズを20km×20kmに固定し、位置を0.05度単位でグリッドサーチにより推定する。 ・その位置を中心にして、他の断層パラメータの最適解を求める。

地形データは日本海洋データセンターの J-EGG500、米国地質調査所の GTOP030 及び米国国立地球物理データセンターの ETOP02v2 を使用

① 3月2日に宮崎県北部平野部でM4.3の地震(最大震度4)が発生した。

② 3月15日に奄美大島近海でM5.6の地震(最大震度4)が発生した。

(上記期間外)

4月8日に大隅半島東方沖でM5.1の地震(最大震度5弱)が発生した。

[[]上述の地震は M6.0 以上または最大震度 4 以上、陸域で M4.5 以上かつ最大震度 3 以上、海域で M5.0 以上かつ最大震度 3 以上、その 他、注目すべき活動のいずれかに該当する地震。]

九州地方における 2024 年 3 月の地震活動 (M≧1.0、陸域 深さ 30km 以浅、海域 深さ 60km 以浅)

51

3月2日 宮崎県北部平野部の地震

52

3月15日 奄美大島近海の地震

2024年3月15日19時32分に奄美大島近海の深さ 19km (CMT解による) でM5.6の地震(最大震度4) が 発生した。この地震の発震機構(CMT解)は北西-南 東方向に圧力軸を持つ型である。この地震後、3月 31日までに震度1以上を観測した地震が3回(震度 3:1回、震度2:1回、震度1:1回)発生した。 1994年10月以降の活動をみると、今回の地震の震 央付近(領域 a) では、M5.0以上の地震が今回の地 震を含め5回発生している。

1885年以降の活動をみると、今回の地震の震央周 辺(領域b)では、M6.0以上の地震が時々発生して いる。1995年10月18日に発生したM6.9の地震(最大 震度5)及び翌19日に発生したM6.7の地震(最大震 度5)により、喜界島で負傷者1人、住家一部破損 4棟などの被害が生じた。これらの地震により、鹿 児島県の中之島で43cm(平常潮位からの最大の高さ) の津波を観測するなど、関東から沖縄にかけての太 平洋沿岸で津波を観測した(被害は「日本被害地震 総覧」による)。また、1911年6月15日にはM8.0の地 震が発生し、死者7名、負傷者26名、住家全壊418棟 などの被害が生じた(被害は「日本被害地震総覧」 による)。

(震源要素は、1885年~1918年は茅野・宇津(2001)、 宇津(1982,1985)による※) ※宇津徳治(1982):日本付近の M6.0以上の地震および被害地震の表:1885 年~1980 年, 震研彙報, 56, 401-463. 宇津徳治(1985):日本付近の M6.0以上の地震および被害地震の表:1885 年~1980 年(訂正と追加),震研彙報,60,639-642.

茅野一郎・宇津徳治(2001):日本の主な地震の表,「地震の事典」第2版,朝倉書店,657pp.

震央分布図

(1994年10月1日~2024年3月31日、

2024 年3月の地震を赤色〇で表示

図中の発震機構は CMT 解

トカラ列島

Ū

喜界鳥

130° E

震央分布図 (1885年1月1日~2024年3月31日、

深さ0~120km、M≧5.5)

2006年11月18日

M6 0

 (\mathcal{O})

喜界島

海溝軸

2017年4月12日

M4.8

N=15922

2006年9月1日

M5.4

今回の地震

2024年3月15日

19km※ M5.6

> 海溝軸

N=190

2002年12月7日

M5.1

131°E

※深さは CMT 解による。

м

6.0

5.0

4.0

3.0 2.5

奄美大島

. 50km

2006年8月13日

M5.3

(/)

徳之順

100km

129° E

下美大鳥

29° N

28°

2017年8月31日

M4.8

屋久島○》種子島

深さO~60km、M≧2.5)

	気象庁CMT	防災科研 (F-net)	USGS (W-pahse))
ー元化震源 M5.6 深さ40km	W E	·	(210, 17, 73)	48, 74, 95)
Mw	5.7	5.7	5.62	USGS震源 深さ52km
深さ	19km	26 km	13.5km	
	Global CMT	GEOFON		
Mw	5.7	5.6		
深さ	27.2 km	22km		
	防災科研(F-net): h	https://www.fnet.bosai.go	.jp/event/joho.php?LA	NG=ja

2024年3月15日19時32分 奄美大島近海の地震Mj5.6(各機関のMT解)

USGS (W-phase) : https://earthquake.usgs.gov/earthquakes/map/ Global CMT : https://www.globalcmt.org/CMTsearch.html GEOFON MT : https://geofon.gfz-potsdam.de/eqinfo/list.php?mode=mt

防災科研(AQUA):https://www.hinet.bosai.go.jp/AQUA/aqua_catalogue.php?LANG=ja

周辺の気象庁CMT解の分布図

防災科研(AQUA)

(掲載なし)

震度5弱を観測

震度5弱 宮崎県

4月8日10時29分発表

検知時刻 (最初に地震を検知した時刻)	4月8日10時25分
発生時刻 (地震が発生した時刻)	4月8日10時25分
マグニチュード	5.1(暫定値;速報値の5.2から更新)
発生場所	大隅半島東方沖 深さ39km(暫定値;速報値 深さ約 40kmから更 新)
発震機構	東西方向に圧力軸を持つ型の地震(速報)
震度	【最大震度5弱】宮崎県の日南市(にちなんし)で震度5弱を観測したほか、九州地方で震度4~1を観測
地震活動の状況 8日11時00分現在	今回の地震発生後、震度1以上を観測した地震の発生なし
長周期地震動の観測状況	階級1以上を観測した地域はなし

防災上の留意事項と今後の見通し

(防災上の留意事項)

この地震による津波の心配はありません。

揺れの強かった地域では、落石や崖崩れなどが起こりやすくなっている可能 性がありますので、今後の地震活動に注意してください。

(今後の地震活動の見通し)

過去の事例では、大地震発生後に同程度の地震が発生した割合は1~2割あることから、揺れの強かった地域では、地震発生から1週間程度、最大震度5弱 程度の地震に注意してください。特に今後2~3日程度は、規模の大きな地震 が発生することが多くあります。

震度分布図·推計震度分布図

※留意事項は以下リンクからご確認ください。

最新の情報は、以下のページでご確認ください。

地震情報:https://www.jma.go.jp/bosai/map.html#contents=earthquake_map 推計震度分布図:https://www.jma.go.jp/bosai/map.html#contents=estimated intensity map

緊急地震速報の詳細

提供時刻		経過	経過震源要素			予測した		
地震波 検知時刻	10時25分35.7秒	時間 (秒)	震央地名	北緯	東経	深さ	М	震度と階級
第6報	10時25分42.1秒	6.4	宮崎県南部平野部	31.6	131.4	30km	4.9	% 3
※3 震度5弱程度		宮崎県南部	『平野部					
震度4程度		宮崎県南部	『山沿い、鹿児島県大隅					

発表状況の詳細は、以下のページでご確認ください。

緊急地震速報(警報)の発表状況:https://www.data.jma.go.jp/eew/data/nc/pub_hist/index.html

東西方向に圧力軸を持つ型

令和6年4月8日 大隅半島東方沖の地震 (発生場所の詳細)

丸の大きさはマグニチュードの大きさを表す。 青破線は南海トラフ巨大地震の想定震源域を表す。

左図の四角形領域内の断面図(A-B投影)

横軸は時間、縦軸は左がマグニチュード、右が地震の積算回数。折れ線は地震の回数を足しあげたものであり、縦棒のついた丸は地震発生時刻とマグニチュードの大きさを表す。

今回の地震活動

(震源の色について)赤色:今回の地震、青色:今回の地震より後に発生した地震、灰色:今回の地震より前に発生した地震

- ・震央分布図中の茶色の細線は、地震調査研究推進本部の長期評価による活断層を示す。
- ・震央分布図中の黒色の点線は、海溝軸を示す。
- <資料の利用上の留意点>
- ・表示している震源は、速報値を含みます。
- ・速報値の震源には、発破等の地震以外のものや、誤差の大きなものが表示されることがあります。
- ・個々の震源の位置や規模ではなく、震源の分布具合や活動の盛衰に着目して地震活動の把握にご利用ください。

今回の地震周辺の過去の主な地震活動

震央分布図

・震央分布図中の茶色の細線は、地震調査研究推進本部の長期評価による活断層を示す。

・震央分布図中の黒色の太破線は、海溝軸を示す。

・1885年から1918年の地震の震源要素は、宇津(1982,1985)及び茅野・宇津(2001)による。

- <地震の名称について>
- ・気象庁が定めた地震の名称を「」で示す。

・上記以外で、被害を伴い、広く社会的に地震の名称として知られているものについて、名称(「」を付加しない)を併記している。 名称は、「日本の地震活動(第2版)」(地震調査研究推進本部)による。

- ・地震の名称の後ろの[]は、この規模の順に近接して発生した主な地震が他にあることを示す。
 名称は、最大規模の地震にのみ付加しており、[]内に記載した他の地震が異なる番号で記載される場合がある。
- <資料の利用上の注意点>
- ・今回の地震は、速報値を表示しており、精査後に修正する場合がある。
- ・過去の地震活動は、M5.0以上の地震、今回の地震は、M4.0以上の地震を表示している。
- ・過去の地震活動は、地域、時期に依らず、全てM5.0以上の地震を表示している。地域や時期により検知能力()が異なる場合がある。
 - 検知能力:特定の地域、時期において、あるM(規模)以上の地震は、概ね全て検知できていると考えられるとする。
 - この場合、そのMが小さいほど検知能力が高いと言う。

一般的に、同時期であれば、海域より陸域の方が検知能力は高く、同一地域であれば、時期が新しいほど検知能力は高い。

震央分布図の青色矩形内のM-T図

63

周辺で想定されている海溝型地震

●想定される地震の対象領域^(注1)

●海溝型地震の長期評価^(注1)

領域または地震名	想定される規模	ランク(注2)
南西諸島周辺及び 与那国島周辺の巨大地震	M8.0程度	Xランク
南西諸島周辺の ひとまわり小さい地震	M7.0~7.5程度	Xランク
与那国島周辺の ひとまわり小さい地震	M7.0~7.5程度	Ⅲランク

- (注1) 2022年3月25日公表の「日向灘及び南西諸島海溝周辺の地震活動の長期評価(第 二版)」より引用。
- (注2) 海溝型地震における今後30年以内の地震発生確率が26%以上を「Ⅲランク」、3%~ 26%未満を「Ⅱランク」、3%未満を「Ⅰランク」、不明(すぐに地震が起きることを否定でき ない)を「Xランク」と表記しています。ランクに「*」を付記している場合は、地震後経過 率が0.7以上を表しています。

※本資料は以下を基に作成しました。

●周辺で想定されている海溝型地震

〇今回の地震の震源周辺では、プレート間地震とフィリピン海プレート 内の地震が想定されています。

●海域で発生した規模の大きな地震後に見られた地震活動の例

〇過去には、2008年の茨城県沖の地震のように、大きな地震の発生後、より大きな地震が発生し、当初の活動域が広がった例もあります。 しかし、2004年の釧路沖の地震のように、より大きな地震は発生せず、 地震活動域が広がらなかった例もあります。

●南西諸島周辺、与那国島周辺で発生する地震(注1)

南西諸島周辺及び与那国島周辺の巨大地震

O17世紀以降、発生した巨大地震は1911年の喜界島地震(M8.0)の1回のみの ため、発生頻度は推定できません。このことから、将来の地震発生確率のラン ク(注2)はXランク、地震の規模はM8.0程度と推定されます。

南西諸島周辺のひとまわり小さい地震

〇1919年以降、M7.0~7.5程度の地震が4回発生しており、その発生頻度は25.8 年に1回(参考値)です。ただし、広大な領域設定となっていることから、発生 頻度は参考値です。このことから、将来の地震発生確率のランク(注2)はXラ ンク、地震の規模はM7.0~7.5程度と推定されます。

与那国島周辺のひとまわり小さい地震

○1919年以降、M7.0~7.5程度の地震が12回発生しており、その発生頻度は8.6 年に1回です。このことから、将来の地震発生確率のランク(注2)はⅢランク、 地震の規模はM7.0~M7.5程度と推定されます。

「活断層及び海溝型地震の長期評価結果一覧」(地震調査研究推進本部) https://www.jishin.go.jp/main/choukihyoka/ichiran.pdf

「日向灘及び南西諸島海溝周辺の地震活動の長期評価(第二版)」(地震調査研究推進本部) https://www.jishin.go.jp/main/chousa/kaikou_pdf/hyuganada_2.pdf

沖縄地方

2024/03/01 00:00 ~ 2024/03/31 24:00

地形データは日本海洋データセンターの J-EGG500、米国地質調査所の GTOP030 及び米国国立地球物理データセンターの ETOP02v2 を使用

特に目立った地震活動はなかった。

※で示した地震については九州地方の資料を参照。

(上記期間外)

4月3日に台湾付近でM7.7の地震(日本国内で観測された最大の揺れは震度4)が発生した。

[[]上述の地震は M6.0 以上または最大震度 4 以上、陸域で M4.5 以上かつ最大震度 3 以上、海域で M5.0 以上かつ最大震度 3 以上、その他、注目すべき活動のいずれかに該当する地震。]

沖縄地方における 2024 年3月の地震活動

(M≧1.0、深さ60km以浅)

<mark>〇</mark>:当月に発生した地震 〇:過去3年間に発生した地震

気象庁作成

4月3日 台湾付近の地震

海藩輔

0 7.0 2024年4月3日08時58分に台湾付近でM7.7の地 震(日本国内で観測された最大の揺れは震度4)が発 生した。気象庁はこの地震に伴い、同日09時01分に 沖縄本島地方及び宮古島・八重山地方に津波警報を発 表した(同日12時00分に解除)。この地震により、与 那国島及び宮古島で0.3m、石垣島で0.2m(いずれも 速報値)の津波を観測した。

この地震の発震機構(CMT)は、西北西-東南東方向 に圧力軸を持つ逆断層型である。

この地震の震央付近では、同日 09 時 11 分に M6.6 の 地震が発生するなど活発な地震活動が継続している。

今回の地震により、日本国内では軽傷2人の被害が あった(2024年4月5日現在、総務省消防庁による)。 また、台湾では、少なくとも死者9人、行方不明52人、 負傷者1,050人などの被害が生じた(2024年4月4日 現在、国連人道問題調整事務所による)。

2009年9月以降の活動をみると、今回の地震の震央 周辺(領域 a)では、M6.0以上の地震が時々発生して おり、2018年2月7日には M6.7の地震が発生し、台 湾で死者17人などの被害が生じた。また、最近では、 2022年9月18日に M7.3の地震が発生し、台湾で少な くとも死者1人などの被害が生じた(被害は国連人道 問題調整事務所による)。

1904年以降の活動をみると、今回の地震の震央周辺 (領域b)では、M7.0以上の地震が時々発生している。 1999年9月21日には集集地震(M7.7、日本国内で観 測された最大の揺れは震度2)が発生し、台湾で死者 2,413人、負傷者8,700人などの被害が生じた(被害 は宇津及び国際地震工学センターの「世界の被害地震 の表」による)。

4月3日の台湾付近の地震に伴い発表した津波警報

23° N

震源要素は、2019 年までは ISC-GEM カタログ、2020 年以降 は気象庁による。ただし、1999 年 9 月 21 日の地震のMは 気象庁による。

2024年4月3日 台湾付近の地震(M7.7、日本国内で観測された 最大の揺れは震度4)の震度分布図

・観測点名の*印は、気象庁以外の震度観測点を示す。

2024 年 4 月 3 日 台湾付近の地震(M7.7)で 観測された長周期地震動階級

2024 年 4 月 3 日 08 時 58 分 台湾付近 北緯 23 度 49.9 分 東経 121 度 35.9 分 深さ 23km M 7.7						
都道府県	長周期 地震動階級	地域名称	地域名称			
沖縄県	1	沖縄県宮古島				
沖縄県	1	沖縄県宮古島	宮古島市城辺福北	2		
沖縄県	1	沖縄県宮古島	宮古島市上野新里	2		
沖縄県	1	沖縄県与那国島	与那国町祖納	3		
沖縄県	1	沖縄県与那国島	与那国町久部良	3		
沖縄県	1	沖縄県西表島	竹富町大原	3		
沖縄県	1	沖縄県西表島	竹富町黒島	3		
沖縄県	1	沖縄県西表島	竹富町波照間	3		
沖縄県	1	沖縄県西表島	竹富町上原小学校	3		

長周期地震動階級1以上を観測した地域・観測点

長周期地震動階級1以上を観測した地域の分布図

長周期地震動階級の凡例: 🔜 階級1 🔜 階級2 📕 階級3 📰 階級4

長周期地震動階級関連解説表

長周期地震動 階級	人の体感・行動	室内の状況	備考
長周期地震動 階級 1	室内にいたほとんどの	ブラインドなど吊り下げ キのナキノ採わる	-
	く人もいる。	もの入るく描れる。	
長周期地震動	室内で大きな揺れを感	キャスター付き什器がわ	-
階級2	じ、物につかまりたい	ずかに動く。棚にある食 翌糖 書棚のすが蒸たる	
	こ恋しる。初につかよ	命題、音棚の本が溶らる ことがある	
	しいなど、行動に支障	CC3 0 0.	
	を感じる。		
長周期地震動	立っていることが困難	キャスター付き什器が大	間仕切壁など
階級3	になる。	きく動く。固定していな	にひび割れ・
		い家具か移動することか	電裂か人るこ
		めり、不安定なものは倒 れることがある	とかめる。
	エーテルファトボデキ		
長周期 地震 動	立っていることかでき	キャスター付き什番か大	间任切壁なく
陷极牛	9、はわないこ勤くこ	さく到さ、転倒りるもの がある 田安していたい	にいい割れ。 争刻がタイカ
	にかてきない。価化に		电表が多くなる
		れるものもある。	30

※長周期地震動階級に関する詳細は、「地震・火山月報(防災編)」令和5年12月号の付録10「長周期地震動階級関連解説表」を参照のこと 気象庁作成

令和6年4月3日08時58分の台湾付近の地震(津波観測状況)

津波観測値(速報)

	津波観測点名称	第一波			最大波			
津波予報区		時刻		時刻			高さ	
		Β	時	分	日	時	分	m
宮古島・八重山地方	与那国島久部良	3	9	14	3	9	18	0. 3
宮古島・八重山地方	港)宮古島平良	3	10	3	3	10	50	0. 3
宮古島・八重山地方	石垣島石垣港	3	9	32	3	10	42	0. 2

※これらの読み取り値は今後の精査により変更することがある。

港)は国土交通省港湾局、記載のないものは気象庁

2024年4月3日08時58分 台湾付近の地震(各機関のMT解)

	気象庁CMT	防災科研 (F-net)	USGS (W-pahse)	
ー元化震源 M7.7 深さ23km	W-T-E		(26, 58, 81) T (222, 33, 103)	
N/W	S	7 /	US(SS震源
深さ	7:4 31km	38km	23.5km	54.0KIII
	Global CMT	GEOFON		
Mw	7.4	7.4		
深さ	33.7km	31km		
	防災科研(F-net) : h USGS(W-phase) : htt Global CMT : https://	ttps://www.fnet.bosai.go ps://earthquake.usgs.gov /www.globalcmt.org/CM1	.jp/event/joho.php?LANG=ja ı/earthquakes/map/ Fsearch.html	

GEOFON MT:https://geofon.gfz-potsdam.de/eqinfo/list.php?mode=mt 防災科研(AQUA):https://www.hinet.bosai.go.jp/AQUA/aqua_catalogue.php?LANG=ja

防災科研(AQUA)

(掲載なし)

「2024/4/3 台湾付近の地震 M7.7」 地震発生確率の状況 確率の計算に用いた震源データ

M≧2.0

確率計算にはM3.5以上を用いた
「2024/4/3 台湾付近の地震 M7.7」地震発生確率の状況 M6.8以上(津波注意報以上)の発生確率

短期的ゆっくりすべり・・・・・・・【四国中部】気象庁の解析結果を示す。

長期的ゆっくりすべり・・・・・・・・【渥美半島周辺、四国中部周辺】国土地理院の解析結果を元におおよその場所を表示している。

令和6年3月1日~令和6年3月31日の主な地震活動

〇南海トラフ巨大地震の想定震源域およびその周辺の地震活動:

【最大震度3以上を観測した地震もしくはM3.5以上の地震及びその他の主な地震】

月/日	時∶分	震央地名	深さ (km)	М	最大 震度	発生場所
3/2	23:00	宮崎県北部平野部	13	4.3	4	地殼内
3/6	02:13	三重県南東沖	-	3.8	-	
3/7	17:14	宮崎県北部平野部	52	4.0	3	フィリピン海プレート内部
3/18	10:58	豊後水道	40	3.9	2	フィリピン海プレート内部
3/19	00:57	日向灘	18	3.5	_	

※震源の深さは、精度がやや劣るものは表記していない。

※太平洋プレートの沈み込みに伴う震源が深い地震は除く。

〇深部低周波地震(微動)活動期間

四国	紀伊半島	東海
■四国東部	■紀伊半島北部	(特段の活動はなかった)
2月28日~3月1日	3月9日~12日	
3月4日~5日	3月14日	
3月13日~14日	3月17日~18日	
3月17日	3月24日~(継続中)	
■四国中部	■紀伊半島中部	
<u>3月22日~(継続中)</u> ・・・(1)	(特段の活動はなかった)	
■四国西部	■紀伊半島西部	
3月7日	3月2日	
3月17日~18日	3月5日~7日	
3月23日~24日	3月21日	
3月26日~(継続中)		

※深部低周波地震(微動)活動は、気象庁一元化震源を用い、地域ごとの一連の活動(継続日数2日以上 または活動日数1日の場合で複数個検知したもの)について、活動した場所ごとに記載している。

※ひずみ変化と同期して観測された深部低周波地震(微動)活動を赤字で示す。 ※上の表中(1)を付した活動は、今期間、主な深部低周波地震(微動)活動として取り上げたもの。

気象庁作成

深部低周波地震(微動)活動(2014年4月1日~2024年3月31日)

深部低周波地震(微動)は、「短期的ゆっくりすべり」に密接に関連する現象とみられており、プレート境界の状態の変化を監視するために、その活動を監視している。

※2018年3月22日から、深部低周波地震(微動)の処理方法の変更(Matched Filter法の導入)により、それ以前と比較して検知能力が変わっている。

・フィリピン海プレート上面の深さは、Baba et al.(2002)、Hirose et al.(2008)、Nakajima and Hasegawa(2007)による。 震央分布図中の点線は10kmごとの等深線を示す。

・今期間の地震のうち、M3.2以上の地震で想定南海トラフ地震の発震機構解と類似の型の地震に吹き出しを付している。吹き出しの右下の数値は、フィリピン海プレート上面の深さからの差(+は浅い、-は深い)を示す。 ・発震機構解の横に「S」の表記があるものは、精度がやや劣るものである。 気象庁作成

プレート境界とその周辺の地震活動

フィリピン海プレート上面の深さから±8km未満の地震を表示している。

震央分布図の各領域内のMT図・回数積算図 (2023年10月1日~2024年3月31日、M全て、2024年3月の地震を赤く表示)

領域a内(東海)

領域b内(紀伊半島)

領域c内(四国)

領域d内(日向灘)

※M全ての地震を表示していることから、検知能力未満の地震も表示しているため、回数積算図は参考として表記している。

想定南海トラフ地震の発震機構解と類似の型の地震

震央分布図(1987年9月1日~2024年3月31日、M≧3.2、2024年3月の地震を赤く表示)

・フィリピン海プレート上面の深さは、Hirose et al.(2008)、Baba et al.(2002)による。 震央分布図中の点線は10kmごとの等深線を示す。

・今期間に発生した地震(赤)、日向灘のM6.0以上、その他の地域のM5.0以上の地震に吹き出しを付けている。

・発震機構解の横に「S」の表記があるものは、精度がやや劣るものである。

・吹き出しの右下の数値は、フィリピン海プレート上面の深さからの差を示す。+は浅い、-は深いことを示す。

・吹き出しに「CMT」と表記した地震は、発震機構解と深さはCMT解による。Mは気象庁マグニチュードを表記している。

・発震機構解の解析基準は、解析当時の観測網等に応じて変遷しているため一定ではない。

