地震調査研究の推進について 一地震に関する観測、測量、調査及び研究の推進についての総合的かつ基本的な施策(第3期)— (案)

はじめに

第1章 我が国の地震調査研究をめぐる諸情勢

- 1. これまでの地震調査研究の進捗 一地震調査研究推進本部による成果―
- 2. 地震調査研究を取り巻く環境の変化

第2章 これからの地震本部の役割

- 1. 社会の期待を踏まえた成果の創出~新たな科学技術の積極的な活用~
- 2. これからの地震調査研究の進むべき方向性
- 3.「災害の軽減に貢献するための地震火山観測研究計画の推進について」(建議)との連 携強化

第3章 今後推進すべき地震調査研究

- 1. 当面10年間に取り組むべき地震調査研究
 - (1) 海域を中心とした地震調査研究
 - (2) 陸域を中心とした地震調査研究
 - (3) 地震動即時予測及び地震動予測の高度化
 - (4) 社会の期待を踏まえた成果の創出~新たな科学技術の積極的な活用~

2. 横断的な事項

- (1) 基盤観測網等の維持・整備
- (2) 人材の育成・確保
- (3) 地震調査研究の成果の広報活動の推進
- (4) 国際的な連携の強化
- (5)予算の確保、評価の実施等

おわりに

はじめに

地震調査研究推進本部(以下「地震本部」という。)は、平成7年1月に発生した阪神・ 淡路大震災を契機として、同年6月に制定された「地震防災対策特別措置法」(平成7年 法律第111号)に基づき、地震に関する調査研究を一元的に推進する機関として設置され、これまで、地震防災対策の強化、特に地震による被害の軽減に資することを目標として政府の地震調査研究を推進してきた。

地震本部は、平成11年4月に「地震調査研究の推進について一地震に関する観測、測量、調査及び研究の推進についての総合的かつ基本的な施策一」(以下「総合基本施策」という。)を策定し、平成21年4月には「新たな地震調査研究の推進について 一地震に関する観測、測量、調査及び研究の推進についての総合的かつ基本的な施策一」(以下「新総合基本施策」という。)(平成23年に発生した東日本大震災において地震調査研究に関する多くの課題等があったことから平成24年9月に改訂)を策定した。新総合基本施策が策定されてから10年程度が経過し、この間の環境の変化や地震調査研究の進展を踏まえつつ、将来を展望した新たな地震調査研究の方針を示す「地震調査研究の推進について一地震に関する観測、測量、調査及び研究の推進についての総合的かつ基本的な施策(第3期)一(以下「第3期総合基本施策」という。)を地震本部において策定することとした。

地震本部が設置されてから20年が経過する間に、その成果は着実に社会へと還元され始めている。全国地震動予測地図や各種長期評価は、防災計画、地震保険の基準料率算定、耐震対策の計画に活用されはじめている。他方、各種長期評価を行う過程で生み出される様々なデータや分析手法が建築物の耐震化等に活用できる可能性は指摘されているが、十分活用が進んでいるとは言えない。

このような状況を念頭に、地震調査研究の成果が、今後更に防災・減災に貢献するものとするため、一般国民のみならず、地方自治体や民間企業、NPO等にとってより活用しやすい成果を提供すること、また、これらの組織からの地震本部への期待を適切に地震本部における議論に反映する体制を構築していくことが必要である。

地震本部は、これまでの成果を踏まえ、更なる地震調査研究を推進しつつ、その成果のオールジャパンでの活用をより推進する10年とすべく、常に最新の知見を取り入れながら、本計画に基づく施策を推進していく。

第1章 我が国の地震調査研究をめぐる諸情勢

1. これまでの地震調査研究の進捗 - 地震調査研究推進本部による成果-

地震調査研究は、平成11年4月に策定された「総合基本施策」及び平成21年4月に策定された「新総合基本施策」(平成23年に発生した東日本大震災において地震調査研究に関する多くの課題等があったことから平成24年9月に改訂)にしたがって、国、関係研究機関、国立大学法人等が連携・協力した体制の下で進められてきた。これまでの主な地震調査研究の進捗状況等を以下に示す。

・基盤観測網の整備

地震本部が策定した「地震に関する基盤的調査観測計画」等に基づき、陸域を中心に、高感度地震観測網や GNSS 観測網等、世界的にも類を見ない稠密かつ均質な基盤観測網が全国に整備されるとともに、その観測データの幅広い流通・公開が実現した。このような基盤観測網で得られた地震観測データ等については、文部科学省と気象庁の協力の下、一元的に収集・処理され、地震調査委員会における地震活動の評価等に提供されている。また、全国の陸域から海域までを網羅する「陸海統合地震津波火山観測網」(MOWLAS)の本格的な統合運用が平成29年11月から開始されており、約2,100か所の観測点が安定的に運用されているとともに、陸域の GNSS 観測網(GEONET)については、約1,300か所の観測点が安定的に運用されている。

・海溝型地震及び活断層の長期評価、全国地震動予測地図の公表

主要な海溝型地震及び「地震に関する基盤的調査観測計画」等において、主要活断層帯として指定した全国の活断層帯を対象とした調査観測・研究が実施された。地震本部は、これらの調査観測・研究から得られた結果等に基づき、関係機関の協力の下、地震調査委員会において地震の長期評価を行い、順次評価結果を公表してきた。また、長期評価と強震動評価等の結果を結合した「全国地震動予測地図」を公表してきた。

・緊急地震速報の実装及び高度化

緊急地震速報について、平成18年から特定利用者向けの先行提供、平成19年から一般向けの提供を開始した。その後、同時多発地震や巨大地震にも対応できる新たな手法(IPF 法、PLUM 法等)の導入や、基盤強震観測網(KiK-net)や地震・津波観測監視システム(DONET)などの関係機関の観測網のデータを新たに取り込むこと等により、緊急地震速報の迅速化、高精度化を図った。

・津波即時予測技術の進展

海域の観測網や GNSS 観測網等を活用した津波即時予測技術の開発及び社会実装の試みが 関係機関において精力的に実施されている。海域の地震津波観測網については、沖合の津波 観測データを活用して、津波波源を推定し、沿岸での津波を即時予測する手法(tFISH)が開発され、津波警報等の更新への活用に向けて検討が進められている。また、陸域 GNSS 観測網等を用いた電子基準点リアルタイム解析システム(REGARD)を活用した津波浸水被害予測システムが東北大学等の機関によって開発され、内閣府の総合防災情報システムの一機能として採用されることになるなど、複数の関係機関において活用が着実に進められている。また、DONET を用いた津波即時予測システムが開発され、和歌山県、三重県等が導入済みである。さらに、防災科学技術研究所によって日本海溝海底地震津波観測網(S-net)により得られる観測データを用いた津波遡上予測システムが開発されつつあり、千葉県との協力により、実データを用いた検証が始まっている。

・海溝型地震の発生メカニズム解明に資する知見の蓄積

地震発生メカニズムに関する知見については、陸域に基盤観測網が整備されたことにより、プレート境界において、大地震を発生させる固着域の周囲で様々な継続時間を持つスロースリップイベントが繰り返し発生していることが明らかになった。海域における観測では、海底地殻変動を観測するための様々な技術開発が実用化に向けて進み、順次観測が行われている。その中でも、GNSS/音響測距結合方式海底地殻変動観測による観測データを解析することで、東北地方太平洋沖地震の地震時変動や地震後の余効変動、南海トラフ沿いの巨大地震の想定震源域の固着の分布状況が明らかにされつつある。また、長期孔内観測装置に備えられているひずみ計等による微小な地殻変動のリアルタイム観測により、プレート境界浅部でもスロースリップイベントの繰り返し発生が示唆されている。このように、海溝型地震の発生メカニズムの解明に資する様々な知見が蓄積されてきている。

2. 地震調査研究を取り巻く環境の変化

・東北地方太平洋沖地震の発生以前、地震本部は同じ領域で同等の規模の地震が繰り返し発生するという考え方に基づき、地震発生履歴を踏まえ、将来発生し得る地震の長期評価を行ってきた。しかし、東北地方太平洋沖地震のような低頻度で発生するマグニチュード(M) 9クラスの超巨大海溝型地震の発生を想定していなかった。この教訓を踏まえ、史料や観測記録だけでなく地質痕跡等の科学的根拠に基づき、低頻度の超巨大地震も想定して評価する手法へ改善を図ることとなった。また、熊本地震においては、最初に発生した地震から28時間後に更に規模の大きな地震が発生して地震活動域も拡大したことから、本震一余震型(一連の地震活動において、最初に発生した地震が最大規模である地震発生様式)の地震活動のみを対象とする従来の余震確率評価手法が適用できない事例となった。これを踏まえ、地震本部では新しい防災上の呼びかけのための指針として、平成28年8月に「大地震後の地震活動の見通しに関する情報のあり方について」をとりまとめ、地震発生直後においては、最初の大地震と同程度の規模の地震への注意を、一週間程度後には発生直後と平常時を比較した場合の地震発生確率に基づいた数値的見通しを提示するなど、注意の

呼びかけを行うことなどが示された。

・「大規模地震対策特別措置法」(昭和53年法律第73号。以下「大震法」という。)は地震の直前予知が可能であるとの考え方に基づいている。しかし、中央防災会議が平成29年9月にとりまとめた「南海トラフ沿いの地震観測・評価に基づく防災対策のあり方について(報告)」では、確度の高い地震の予測は現在の科学的知見では難しいことや、被害をより軽減するため、現在の科学的知見を十分に活用し、あらかじめその対応を考えることが重要であることが述べられており、それを踏まえ、新たな防災対応が定められるまでの当面の対応として、平成29年11月から「南海トラフ地震に関連する情報」の発表を開始するなど、大震法に基づく防災対応の方向性が大きく変わってきている。

第2章 これからの地震本部の役割

今後、南海トラフ沿いの地震、千島海溝沿いの地震、相模トラフ沿いの地震といった甚大な被害が想定される海溝型地震が高い確率で発生すると見込まれている。地震本部は、今後30年以内の地震発生確率について、南海トラフ沿いにおいてはM8~M9クラスの地震が70%~80%、千島海溝沿いにおいてはM8.8程度以上の地震が7~40%、相模トラフ沿いにおいてはM7程度の地震が70%と評価している。また、陸域における地震についても、その震源は浅い場合が多いため、今後も熊本地震のような大きな被害が想定される地震の発生のおそれがある。

このような状況を踏まえ、地震本部は、地震災害から国民の生命・財産を守り、安全・安心な社会の実現に貢献するため、将来発生し得る地震に関して、一般国民や防災担当機関の期待を踏まえた形で、更に精度の高い地震発生予測、津波即時予測及び津波予測(津波の事前想定)、地震動予測及び地震動即時予測を実現し、その成果を適切に一般国民、防災担当機関等に提供する取組を推進していく。

- 1. 社会の期待を踏まえた成果の創出~新たな科学技術の積極的な活用~
- ・ 平成 28 年に定められた科学技術基本計画においては、Society5. 0(ICT を最大限に活用し、仮想空間と現実世界を融合させた取組により人々に豊かさをもたらす世界)の実現に向けた取組を推進することとされている。地震調査研究の分野においても、これまでも衛星データの活用など科学技術の進展に伴い様々な手法の開発に挑戦してきているところではあるが、近年の IoT、ビッグデータ、AI といった情報科学分野を含む科学技術の著しい進展も踏まえ、従来の技術による調査研究に加え、新たな科学技術を活用して、防災・減災の観点から社会に対して更なる貢献をしていくことが期待されている。
- ・ 地震分野において、防災・減災を効果的に進めるためには、産学官、地方自治体、一般 国民といった多様な主体による取組が重要である。他方で、これまでの地震調査研究の成 果により、多様かつ大規模なデータが集められた結果、活用する主体によって必要な情報、 データの種類、データ量が異なる状況が生まれている。
- ・ こうした状況を前提にし、地震本部の成果を多様な主体における活用につなげることで、 我が国全体の地震の被害軽減に貢献するため、地震本部は、防災・減災への対応を担当す る政府機関、地方自治体、民間企業等とのコミュニケーションをより緊密に行い、これら 各関係者の有する地震本部への期待やニーズを踏まえた上で、地震の調査研究を推進して いくべきである。また、ビッグデータの活用を始めとした新たな情報科学分野の知見を積 極的に取り込んでいくことにより、多様なデータの活用主体の期待を踏まえた地震の調査 研究を推進していくべきである。さらに、得られた成果についても、各関係者との緊密な コミュニケーションを踏まえて、広報等において、その期待やニーズを踏まえた形で、各 関係者それぞれに適切な内容や形式により提供していくことが重要である。また、大学、 研究開発法人等の地震調査研究の成果を創出する組織においては、理学分野、工学分野、

社会科学分野といった多様な分野の研究者が連携して、情報科学技術を含む新たな科学技術を活用して、調査研究を進めることが、社会の期待とニーズを適切に踏まえた調査研究の成果を創出していく観点から重要である。更に、このような、多様な分野の研究者の連携は、研究成果の創出に加えて、広報、人材育成等といった地震調査研究における横断的事項の推進にも大きく資するものである。なお、成果創出に向けた多様な関係者の連携を進めるに当たって、政府関係機関の役割も重要であり、地震本部は、中央防災会議、地震予知連絡会、科学技術・学術審議会の測地学分科会、研究計画・評価分科会防災科学技術委員会等関係機関とも緊密に連携して情報交換を行いつつ、その事務を推進していくことが重要である。

・ 以上のような取組を推進することで「社会の期待を踏まえた成果の創出〜新たな科学技術の積極的な活用〜」を実現することにより、我が国における地震分野の防災・減災に貢献していくことを、これからの地震本部の重要な役割とすべきである。

2. これからの地震調査研究の進むべき方向性

· 社会の期待を踏まえた成果の創出に向けて、新たな科学技術を積極的に活用をしつつ地 震調査研究を進めていくにあたり、その方向性は以下の通りである。

(海域を中心とした地震調査研究)

- · 現在の地震本部の長期評価では、主として地震発生履歴に基づいた統計的手法により地震の発生規模やその発生確率を評価の上、公表してきた。
- ・他方、南海トラフや千島海溝沿いの海溝型地震の発生確率は非常に高く、防災対策への 貢献の観点から、地震本部の長期評価の更なる精度向上が期待されている。また、南海ト ラフ沿いの地震等のように、過去には大きな地震の発生に引き続いて周辺の領域で大きな 地震が発生した事例があることは広く知られており、この点を踏まえ、中央防災会議にお いては、南海トラフ沿いの地震に関して地震発生状況のケース毎の防災対応について議論 を行っているところである。このように大地震後の地震活動の推移についての予測の重要 性が高まりつつある中、地震活動の推移予測手法は現時点では確立していない状況にある。
- ・ これらを踏まえ、海溝型地震の発生予測手法を高度化し、長期予測の精度向上に貢献していくとともに、海溝型地震発生後の地震活動の推移予測手法の高度化に取り組むことが重要である。具体的には、海溝型地震の関連データについて、各種観測網を通じたリアルタイムの地殻変動や地震活動のデータを充実させ、物理モデルに基づくシミュレーションの高度化を行い、最新の情報技術を活用してこれらを組み合わせて推移予測する手法の開発を推進することが重要であり、また、将来的には、その成果を地震の現状評価や長期評価に組み込むことを目指していくべきである。

(陸域を中心とした地震調査研究)

- ・ また、内陸における地震については、海溝型地震に比べ小規模ではあるが震源が浅い場合が多く、市街地の近くで発生すると、熊本地震のような大きな被害の発生が想定される ため、防災対策の観点から、その長期評価の高度化は重要である。
- ・ 他方、内陸における地震の震源と活断層の関連については、不明なものも多く、地震本部において、既知の活断層以外の震源断層による地震の評価が課題となってきた。
- ・ このような地震の評価については、これまで一定の地域を設定して地震発生確率を算出する地域評価を実施してきたところであり、これを全国において早急に完成させるとともに、既知の活断層及びそれ以外の震源断層について、断層モデルの構築等による評価手法の研究を推進することが重要である。

(地震動予測及び津波予測)

- · 更に、地震本部設置以来目覚ましい発展を遂げた地震動即時予測及び津波即時予測は、 地震や津波の被害軽減に直接貢献するものであって、既に気象庁や一部自治体、民間企業 によって実際の防災システムに実装されている。
- ・ 他方、地震動及び津波の即時予測には、観測網の充実や予測手法の高度化により、更な る迅速化及び高精度化を実現できることから、防災関係機関や地方自治体からの期待も高 く、地震本部として、これを推進していくことが重要である。
- ・ 以上のような調査研究を含めて、次章に掲げる地震調査研究を推進していくことにより、 我が国の地震分野の防災・減災に貢献していくことを、これからの地震調査研究の方向性 とする。
- 3.「災害の軽減に貢献するための地震火山観測研究計画の推進について」(建議)との連携 強化
- ・ 地震本部の取組は、科学技術・学術審議会により建議された観測研究計画のもと、大学 や研究開発法人等により生み出された基礎的研究の成果も取り入れながら推進されてき た。地震本部が設置されてから20年以上が経過し、建議に基づく基礎的研究の成果のう ち、地震本部において活用できるものについては既にかなり活用が進んでいる中で、地震 本部としても、今後の事業の高度化に向けて、新たな基礎研究成果の創出が期待されてい る。
- ・このような状況を踏まえて、建議の適切な独立性は保ちつつ、地震本部と建議を担当するコミュニティとの間で組織的な連携体制を構築することが重要である。具体的には、地震本部と建議を担当するコミュニティの間で対話の場を設定し、建議の最新の研究成果についての情報を共有するとともに、建議を担当するコミュニティに地震本部における課題を共有することで、建議の基礎的研究の成果を地震本部で適切に活用していく体制を整えることが重要である。

・ また、建議でも示されているように、地震と火山現象は共通する地球科学的背景を持つことから、地震に関する調査研究の実施に当たっては火山研究の動向も注視していくべきである。

第3章 今後推進すべき地震調査研究

- 1. 当面10年間に取り組むべき地震調査研究
- (1)海域を中心とした地震調査研究
- ① 海溝型地震の発生予測手法の高度化
- ・これまで地震本部では、防災対策への貢献の観点から、主として過去の地震発生履歴に基づいた統計的手法により、海溝型地震の長期評価を実施し、一定の成果を上げてきた。
- ・他方、南海トラフや千島海溝沿い等においては、今後、大きな被害を及ぼす地震・津波の 発生確率は高く、また、日本海溝沿いにおいても東北地方太平洋沖地震の余震が続いてお り、海溝型地震の中・長期的な発生予測精度の向上が期待されている。
- ・また、中央防災会議においては、南海トラフ沿いにおける地震の発生状況や異常な地殻変動の観測状況に基づくケース分類を行い、ケース毎の防災対応の議論を行っているが、地震発生可能性の評価手法は、現段階では地震発生履歴に基づく方法等に限られることから、地震の発生予測、推移予測の研究や技術の更なる進展が求められている。
- ・これらを踏まえると、海溝型地震の発生予測手法について、地震発生履歴に基づく統計的 手法のみならず、近年明らかにされつつあるプレート間固着・すべりの状況やスロースリップ現象に関するリアルタイムでの観測手法の開発等を通じた地殻変動・地震活動データ 等の各種観測データの充実が必要である。また、物理モデルに基づく現状把握、地殻変動・ 地震活動データと現実的なモデルに基づいたシミュレーションを活用した地震発生の可能性が時間変化しうることも考慮したハザード評価、南海トラフ地震における半割れケースのような事例についての周囲への影響を考慮した統計モデルを含めて、手法の高度化が必要である。これにより、将来的に、海溝型地震の発生の予測精度を向上させるとともに、プレート間固着・すべりの現状把握やその後の地震活動推移予測に貢献していくことが重要である。

このため、基本目標として、

「海溝型地震の発生予測手法の高度化」を設定する。

- 基本目標の達成に向けて、この10年間に以下の項目について取り組むべきである。
 - -南海トラフ、日本海溝や千島海溝沿いの地震等の海溝型地震について、地震発生履歴、地震発生メカニズムやプレート間固着の状態等をより適切に把握するためのデータ収集体制を強化する。具体的には、新たな海底地震・津波観測網や地殻変動観測網の整備を進めるとともに、各種データ(地震活動状況、海溝付近を含む海陸の堆積物データ、史料、深部掘削によるプレート境界の地質データ、広域かつ三次元的な海域地下構造データ、地震破壊の力学的特性に関する室内実験データ等)の時間・空間分解能の向上を図る。

- -時間・空間分解能を向上させた陸海の地殻変動データ・地震活動データ等を用いたプレート間固着・すべりのモニタリングの高度化を図る。南海トラフでは、半割れケースなど大地震後の地震活動の推移予測が特に重要であることから、プレート間固着・すべりの状況を高い解像度でリアルタイムに把握することを目指す。
- -南海トラフ沿い等で過去に発生した地震・津波の履歴や収集した各種データを説明できるような海溝型地震の物理モデルの高度化、周囲への影響を考慮した統計モデルの開発、地震サイクル及び地震破壊に関するシミュレーション技術等、各種シミュレーション技術の開発・高度化を計算科学・情報科学と連携して進め、大地震後の地震活動の推移予測など、海溝型地震の発生予測手法の高度化を図る。

② 津波即時予測及び津波予測(津波の事前想定)の高度化

- ・東北地方太平洋沖地震の死者は津波によるものが大半であったこと、また中央防災会議による南海トラフ地震の被害想定で津波による死者が多数想定されていることなどを踏まえると、今後の津波災害の軽減に貢献する津波予測技術の高度化は重要な課題である。
- ・津波予測については、地震発生後に行う津波即時予測(津波警報等)と地震が発生する前 に行う津波予測(津波の事前想定)がある。
- ・津波即時予測については、地震発生後3分程度を目標として津波警報等が発表されるが、これは即時性を確保するために地震計で得られるデータに基づき様々な仮定を置いて予測を行っている。そのため、予測精度は必ずしも高いとは言えない。このため、CMT 解の活用や、海底地震・津波観測網が整備されている海域においては、観測された津波データの活用により、津波警報等の更新が行われている。
- ・現在、海底地震・津波観測網は、東北地方太平洋沖を中心とする日本海溝沿いと南海トラフ沿いのうち紀伊半島沖から室戸岬沖までの海域に整備されている。しかしながら、南海トラフ沿いのうち、室戸岬沖から日向灘沖までの海域については、観測網の空白域となっており、この海域に海底地震・津波観測網を構築し、それにより観測された津波データに基づく津波警報等が提供されることが、重要である。
- ・更に、津波即時予測については、海底地震・津波観測網のデータを活用して、より迅速に、より高い精度で津波警報等を更新する技術が期待されるとともに、津波の沿岸地域における津波の遡上予測手法の高度化やその社会実装の促進に資する技術開発についても、更なる災害軽減の観点から重要である。
- ・これらの取組を進めることで、津波即時予測技術の高度化を図ることが重要である。
- ・また、地震が発生する前に提供する津波予測については、将来発生すると考えられる津波の情報を地域住民や地方自治体に提供することで、防災・減災対策や実際に津波が発生した際の避難行動を促すことが期待される。そのため、過去の津波発生履歴を把握するための津波堆積物や史料等の調査、津波発生の原因となり得る海底活断層の情報の収集、津波発生モデルの高度化、津波シミュレーション技術の高度化等を行い、津波予測技術の高度化を図り、津波予測情報の提供を行うことが重要である。

このため、基本目標として、

「津波予測技術(津波即時予測技術及び地震発生前に提供する津波予測の技術)の高度化」 を設定する。

- ・基本目標の達成に向けて、この10年間に以下の項目について取り組むべきである。
 - -南海トラフ沿いの巨大地震の想定震源域の西側(高知県沖〜日向灘沖)の海域において、新たな海底地震・津波観測網を構築する。また、この観測網による津波観測データの津波警報等への提供を進める。更に、海底地震・津波観測網の構築、保守・運用に係る経費の低減に向けた技術開発に取り組む。
 - -津波即時予測の迅速化、高精度化のための技術開発、津波の沿岸地域における遡上予測 技術の高度化及び社会実装に資する技術開発を進める。
 - -陸域 GNSS 観測網など陸海の地殻変動データ等を用いた断層破壊域把握と津波即時予測 の高度化を進める。
 - -津波堆積物の調査、海底地形や海底活断層等の調査、海溝軸沿いの地殻変動の観測、史料等の収集、津波発生モデルの高度化、地震発生前に提供する津波予測技術の高度化、 津波シミュレーション技術の高度化を行い、それに基づく津波予測情報の提供を行う。

(2)陸域を中心とした地震調査研究

①内陸で発生する地震の長期予測手法の高度化

内陸の浅いところで発生する大地震は、海域で発生する巨大地震に比べて規模が小さくても市街地に近いことから、防災上その発生予測が重要である。地震本部は、設置以来、全国の主要な活断層について精力的に調査を実施するとともに、これらを震源とする地震の発生確率、規模、発生する強震動等を評価・公表し、一定の成果を上げてきたことから、引き続き現行の調査を推進する必要がある。他方で、既知の活断層以外の震源断層において大きな被害を伴う地震が発生していることを踏まえると、内陸で発生する地震の評価及び活断層に関する調査研究手法等の高度化が期待される。

・活断層に関する調査研究手法等の高度化

- -これまでの活断層調査では、発生確率や規模が不明な断層が存在することや、連動型地 震の発生間隔及び発生確率の評価手法が確立されていないなどの課題がある。
- -全国の多くの活断層について、より詳細な調査を実施していくことは重要であるものの、 時間的にもコスト的にも困難であることから、現行の調査手法を高度化しつつ、最新の 知見も踏まえながら、より効果的、効率的な調査手法を開発することが重要である。
- -また、適切で理解しやすい活断層情報を社会に提供するため、沿岸海域も含めた活断層 の詳細な位置や関連する地形等の情報の整備をより一層推進し、国民の具体的な行動判

断に活用できるものとなるように、活断層の位置や関連情報をわかりやすく、かつ網羅的に速やかに公表・提供していく必要がある。

- -衛星合成開口レーダ(SAR)を用いることで、三次元地殻変動の把握や地表地震断層等の詳細な地表変位の把握が可能となってきており、これらは地殻活動の現状評価に着実に活用されているが、長期評価を含めた更なる活用のためには関連技術の高度化が重要である。
- ・既知の活断層以外の震源断層による地震の評価の高度化
 - -内陸における地震については、その震源と活断層の関連が不明なものも多く、地震本部として、これら既知の活断層以外の震源断層による地震の評価が課題となってきた。このため、現在、このような地震については、一定の地域を設定し、そこで発生した過去の地震データから地域単位の地震発生確率を算出する地域評価を実施してきている。
 - -このような地域評価を加速するとともに、地域単位の活断層の評価に留まらず、既知の活断層によるもの以外の地震について、過去に発生した地震の震源断層の評価、又は、既存の活断層以外の断層に関する知見に基づく地震発生の評価を行うことは、地震に対する理解を促進し、災害軽減に向けた貢献が期待されるため重要である。

このため、基本目標として、

「内陸で発生する地震の長期予測手法の高度化」を設定する。

- ・基本目標の達成に向けて、この10年間に以下の項目について取り組むべきである。
 - -内陸で発生する地震の長期予測を高度化するために、整備された地震観測網により蓄積された地震活動の分布、歴史地震の調査による地震活動の履歴、活断層で発生した地震の調査等の情報を総合して評価する手法の開発を進める。評価には、応力場の時空間的変化など他の情報を取り込むことも検討する。
 - -引き続き、活断層の地域評価を推進し、全国すべての地域で早急に完成させる。このため、必ずしも、活断層の評価にこだわらず、近年の地震観測網により蓄積された地震活動の分布を活用した評価を推進する。
 - -全国活断層帯情報整備による詳細な活断層位置の調査を引き続き推進する。
 - -将来の地震発生確率が不明である活断層について、調査手法の高度化により既存の手法 では取得困難な活動履歴、平均変位速度、位置等の情報を明らかにし、長期評価を実施 する。
 - -地震発生時に社会的影響の大きい主要活断層や、評価に必要な基礎データが不足している活断層を対象とした調査研究を進めることにより長期評価の信頼性を向上させるとともに、高度化された調査手法を適用して調査の効率化を図る。
 - -三次元震源断層モデルの構築や既知の活断層以外の震源断層の評価に向けた調査研究 を推進する。

-衛星リモートセンシング技術の高度化を推進する。

②大地震後の地震活動に関する予測手法の高度化

大地震が発生した後の地震活動についての定量的な予測に関する情報は、防災上重要である。他方、内陸の地震では、本震一余震型のみならず、前震の後における本震の発生やそれに伴う群発活動による被害の発生が起こり得る。例えば、熊本地震においては、最初の地震から28時間後に更に規模が大きな地震が発生して地震活動域も拡大したことから、従来の余震確率評価手法は適用できない事例となった。このような状況に対応するため、陸域の地震に加え海域の地震も含め、統計地震学の手法を用いた、大地震後に更に規模が大きい地震が起きる前震一本震一余震型の地震の発生確率の評価に向けた研究や大地震発生後の揺れの空間分布の予測に向けた研究を推進することが期待されている。

このため、基本目標として、

「大地震後の地震活動に関する予測手法の高度化」を設定する。

- 基本目標の達成に向けて、この10年間に以下の項目について取り組むべきである。
 - -統計地震学の手法を用いた大地震後の地震活動の予測に向けた研究及び大地震発生後 の揺れの空間分布の予測に向けた研究を行う。

(3) 地震動即時予測及び地震動予測の高度化

- ・海域及び陸域の地震による揺れがもたらす災害の軽減に貢献するための地震動の予測には、地震発生直後に予測する地震動即時予測と、地震が発生していない段階において今後 起こり得る地震動を予測する地震動予測がある。
- ・前者に関しては、緊急地震速報として、既に社会実装されているが、今後、MOWLASのデータの更なる活用や技術開発を通じ、地震動即時予測の高精度化、迅速化の推進が期待される。特に、ほぼ同時に複数地点で地震が発生した場合に、適切な震源決定が行われないなどの課題があったが、気象庁及び大学等の研究成果を用いて改善してきていることもあり、引き続き運用機関と研究者が連携して地震動即時予測の高度化に取り組むことが期待される。また、長周期地震動についても、その即時予測技術についての高度化や社会実装に向けた技術開発が望まれる。
- ・後者に関しては、地震本部は、全国地震動予測地図を作成し、継続的に更新及び公表をしている。全国地震動予測地図の作成には強震動評価手法が重要な位置づけを担っており、 観測事実や最新の地震動シミュレーション研究の結果に基づき、適切に改訂を行っていく ことが求められる。東北地方太平洋沖地震や熊本地震の経験を踏まえると、M9クラスの 超巨大地震や震源断層近傍における強震動についての評価に課題があり、特に、これらに ついて評価手法の高度化が期待される。
- ・長周期地震動については、海溝型地震や陸域の長大断層(M8クラスの地震を発生させる 陸域の活断層)による地震といった大きな地震における発生が、特に人口の集中している

都市が位置する大規模堆積平野、盆地等で懸念されている。現段階では、これら地震による長周期地震動の予測精度に向上の余地があるため、予測手法の高度化が期待される。

・地下構造の情報は地震動予測にとどまらず国民共有の財産として非常に重要な情報であり、地震本部の全国地震動予測地図を含めた地震動評価に活用されているのみならず、自治体や民間企業等の社会の様々な主体による防災対応にも利活用されている重要な情報である。このような情報が、関係機関によって共有される仕組みについてより効果的、効率的なものとすることが期待される。

このため、基本目標として、 「地震動即時予測及び地震動予測の高度化」 を設定する。

- ・基本目標の達成に向けて、この10年間に以下の項目について取り組むべきである。
- -地震動即時予測の高精度化、迅速化を推進する。特に、同時多点で発生した地震に対する 地震動即時予測の精度向上を推進する。
- -長周期地震動に関する地震動即時予測技術の高度化及び社会実装に向けた技術開発を行う。
- -M9クラスの超巨大地震による強震動や内陸地震の震源断層近傍の強震動評価手法を確立するため、最新の知見の収集と検討を継続する。
- -長周期地震動予測の手法及び深部地下構造モデルの高度化を進める。
- -海域及び陸域を中心とした地震調査研究による長期評価の高度化、地下構造モデルの高度 化、及び地震動評価の高度化を踏まえた、全国地震動予測地図の更新と高度化を継続する。
- -工学的利活用に向けて、地震動の応答スペクトルに関する地震動予測地図を作成する。

(4) 社会の期待を踏まえた成果の創出~新たな科学技術の活用~

- ・海溝型地震や陸域の活断層の長期評価、基盤観測網等による得られるデータ、強震動や長 周期地震動に関する予測技術等の地震本部の成果は、現在も様々な形で関係機関に活用さ れているが、今後、地震本部は、防災関係の政府機関、地方自治体、民間企業等の防災・ 減災対策に対して、これまで以上に貢献できるような成果を創出していくことが期待され ている。
- ・そのためには、地震本部は、防災・減災への対応を担当する政府機関、地方自治体、民間 企業等とのコミュニケーションをより緊密に行い、これら各関係者の有する地震本部への 期待やニーズを踏まえた上で調査研究を推進すること、そして、理学、工学、社会科学の 分野の研究者が連携して、ICTを含む新たな科学技術の活用により調査研究を進めること が、重要である。

このため、基本目標として、

「社会の期待を踏まえた成果の創出~新たな科学技術の活用~」を設定する。

- ・基本目標の達成に向けて、この10年間に以下の項目について取り組むべきである。
 - -ICT を含む新たな科学技術の活用により、地震調査研究を推進する。
 - -内閣府(防災担当)等と連携し、地震本部が地震時の揺れの強さや津波高などの自然現象と、その発生確率の評価(ハザード評価)を提供することで、相互の取組を効果的・効率的に推進できるよう、連携を一層強化する。
 - -理学分野・工学分野・社会科学分野の専門家や民間企業のメンバーを委員に加えた会議体を構成し、民間企業のニーズをくみ取った調査研究を進めるとともに、地震本部が蓄積してきた各種データのオープン化と民間利用を推進する。
 - -長期評価や、全国地震動予測地図、地震発生前に提供する津波予測情報等の地震本部の成果について、地方自治体の地域防災計画の策定等の防災対応への活用に関するヒアリング等を実施し、より適切な情報提供方法の検討を行うなど、地方自治体との連携を一層促進する。
 - -地震調査研究プロジェクトについて、その構想段階から、プロジェクトにより得られる 各種データのオープン化を意識して推進する。
 - -関連府省庁等の有する災害情報をシステム間で相互に取り込み、基盤地図情報等を用いて必要なデータを一つに重ねることができる形で共有する「府省庁連携防災情報共有システム」(SIP4D)を活用して、地震本部の関連情報について、ニーズを踏まえたオープン化を推進する。
 - -実大三次元震動破壊実験施設(E—ディフェンス)等を用いた地震動による構造物等の 応答に関する研究を推進するとともに、民間企業による活用などを一層推進する。

2. 横断的な事項

(1) 基盤観測網等の維持・整備

- ・これまで「基盤的調査観測計画」、「地震に関する総合的な調査観測計画」に基づいて、陸域を中心として整備された基盤観測網は世界的にも類を見ない稠密かつ高精度な観測ネットワークであり、地震調査研究を推進する上で、基盤的かつ重要な観測設備であり、引き続き維持、運用しつつ、更新に向けた準備を進めていく必要がある。
- ・また、現在準基盤的調査観測に位置付けられている海底地殻変動観測など、全国的に展開することは困難であるものの、実施することが非常に有効であると考えられる調査観測も存在する。これらについても充実、強化を図る必要がある。

このため、基本目標として、

「基盤観測網等の長期にわたる安定的な維持・整備」を設定する。

- ・基本目標の達成に向けて、この10年間に以下の項目について取り組むべきである。
 - -MOWLAS、GEONET、気象庁等の陸海の基盤観測網を着実かつ安定的に運用する。また、まだ整備されていない海域について、まずは南海トラフの西側の海域(高知県沖~日向灘沖)の整備を推進する。
 - -海底地殻変動観測を着実かつ安定的に運用するとともに、更なる充実、強化を図る。
 - -合成開口レーダ等の衛星を用いた観測技術の更なる利活用を推進する。
 - -地震動波形データの取得のため、首都圏地震観測網(MeSO-net)、大学、地方公共団体における震度計等の計測機器の維持整備や、震度情報ネットワーク等の災害情報を瞬時に伝達するシステムの維持整備を推進する。
 - -観測のために必要な機器について、効果的、効率的な整備・維持管理の観点から、小型化、廉価化、長寿命化及び大容量データ伝送の効率化などに向けた研究・開発を推進する。
 - -これらの基盤観測等から得られる観測データについては、地震調査研究をより一層発展させるために、円滑なデータの流通・公開を促進するとともに、公的機関のみならず民間等でもリアルタイム地震情報を利活用可能とする技術の開発及び体制構築を推進する。
 - -地震と火山現象は共通する地球科学的背景を持っており、巨大地震によって火山噴火が 誘発される現象や火山活動が地震活動や断層の動的破壊過程に及ぼす影響などが指摘 されている。地震現象を総合的に理解するためには、海溝型地震及び内陸地震の発生、 マグマの生成・上昇等を統一的に理解する必要があること、また観測項目に共通点があ ることなどにも鑑み、観測網の維持・整備に当たっては火山に関する研究にも留意する。

(2) 人材の育成・確保

- ・地震大国である我が国における、地震調査研究の重要性を踏まえ、地震調査研究を志す若 手研究者の数を増やすことは、重要な課題である。また、地震調査研究の成果は社会的に も大きな影響を与え得ることから、理学的な理解のみならず、工学、社会科学など、複数 の研究分野を理解している人材を育成することが望ましい。
- ・優秀な人材確保のためには、地震に関連する理工学等の分野を、次代を担う児童・生徒、 学生にとって魅力的な学問とすることが重要である。
- ・引き続き地震調査研究を充実させ、さらにその成果を社会に発信していくためにも、こう した人材育成を関係者が連携して取り組むことが重要である。また、他分野の研究者から 見ても、地震調査研究分野が魅力あるものであり、異分野融合が進むような取組を推進す ることも重要である。

このため、基本目標として、

「地震調査研究における人材の育成・確保」を設定する。

- 基本目標の達成に向けて、この10年間に以下の項目について取り組むべきである。
 - -地震調査研究の成果や魅力を分かり易く伝えるための資料の提供など、地震本部のみならず関係機関、研究者による積極的なアウトリーチ活動を推進する。
- -教育関係機関と連携して生徒、学生への地震調査研究の成果の展開を促進する。

(3)地震調査研究の成果の広報活動の推進

- ・地震本部は、その成果物の広報活動も重要な役割として位置付けられており、毎月の地震の現状評価の公表、各種長期評価や全国地震動予測地図を用いた広報活動やインターネット上のウェブサイトでの地震調査研究の解説などを実施し、一定の成果をあげてきた。
- ・他方、これまでの広報活動は、情報の受け手が主に一般の国民と想定されていたため、地方自治体の防災職員や民間企業の技術者など、ある程度の専門性があり、防災の実務に携わる人々へ発信が十分でない面があった。今後は、地震本部において社会の期待を踏まえた多様な関係者の連携による成果の創出が推進されることを踏まえ、地震本部の成果が、防災対応の担い手のニーズを踏まえた形で情報提供され、適切に活用されることが重要である。なお、その際には長期評価等の各種評価を相互に連携させ、一貫性ある活動を行うことに留意することが必要である。

このため、基本目標として、

「地震調査研究の成果の広報活動の推進」を設定する。

- 基本目標の達成に向けて、この10年間に以下の項目について取り組むべきである。
 - -一般国民から防災担当機関、専門家を含めた幅広い層に向けた広報を実現するため、「日本の地震活動-被害地震から見た地域別の特徴-」の改定、長期評価や全国地震動予測

地図等の公表資料の不断の改善といった既存の取組みを引き続き推進するとともに、幅 広い層における対象毎にそれぞれ必要な情報提供を実施するための取組について検討 し、広報資料、地震本部ウェブサイト、説明会資料等に随時反映していく。

(4) 国際的な連携の強化

- ・地震本部は、世界でも類を見ない稠密な陸域観測網の整備等を推進してきており、各機関の地震観測データは国内外に広く公開され、地震調査研究の国際的な進展に大きく貢献してきた。他方、長期評価や全国地震動予測地図といった地震本部の成果物の国際的な発信についてはまだ改良すべき点がある。
- ・また、M9クラスの超巨大地震は世界的に見ても発生頻度が低い現象であり、そのメカニズムを含めて、地震発生の物理現象の解明は未だ十分でないことから、地震調査研究に関する国際的な連携が不可欠である。

このため、基本目標として、

「国際的な連携の強化」を設定する。

- ・基本目標の達成に向けて、この10年間に以下の項目について取り組むべきである。
 - -国際的な学会などで地震本部の成果を積極的に発信する。
 - -地震本部の成果が国際的に活用されるよう、地震・津波・地殻変動観測データの幅広い 流通・提供、地震本部ウェブサイトや報告書における日本語版に加えて英語版の充実、 二国間及び多国間の協力枠組みによる成果の発信、展開を推進する。
- -地震発生の物理現象の解明などの地震調査研究について、国際共同研究・海外調査を推進する。

(5)予算の確保、評価の実施等

- ・第3期総合基本施策で設定した基本目標を確実に達成するため、厳しい財政状況ではある ものの、国、関係研究機関、国立大学法人等は、第3期総合基本施策に基づく地震調査研 究の推進に必要な予算の確保に向けて、最大限努力する。
- ・地震本部は、関係機関の地震調査研究関係予算の事務の調整を適切に行うとともに、第3 期総合基本施策に基づき、地震調査研究の着実な推進が図られるよう、我が国全体の地震 調査研究関係予算の確保に努める。
- ・また、地震本部は、定期的に関係機関の地震調査研究の進展状況を把握し、第3期総合基本施策等との整合性の観点から評価を行うとともに、その結果を関係機関の実施計画等に適切に反映する。なお、東北地方太平洋沖地震の発生を踏まえて新総合基本施策を改訂したことを踏まえ、地震調査研究の大きな方針に変更の必要が生じた場合には、第3期総合基本施策の改訂を行う。

おわりに

地震本部は、その設置以来20年以上の期間にわたって活動を行ってきており、地震調査研究と、その成果の活用について一定の成果をあげてきている。他方、2011年東日本大震災では甚大な被害が発生し、また、南海トラフでは今後大きな被害を及ぼすと想定される大地震の発生確率が高いと予測されている。これを踏まえると、地震・津波に関する諸現象を解明・予測するための地震調査研究を進め、その成果を社会に示し、社会実装してもらうことにより、防災・減災対策に生かすという取組の重要性は、より一層増してきている。

このため、第3期総合基本施策を指針として、我が国の地震調査研究の飛躍的な進展を図るとともに、その成果が防災・減災対策においてより活用されるように努めることにより、我が国が地震災害に対して強い国となるよう、オールジャパンとして、戦略を持ち、関係者一丸となって努力していかなければならない。