日向灘の地震を想定した強震動評価

日向灘の地震に関して地震調査委員会は、「日向灘および南西諸島海溝周辺の地 震活動の長期評価」(地震調査委員会,2004;以下「長期評価」という)³を公表し、 この中で日向灘の地震の想定震源域の位置や発生確率などを示した。今回、この 「長期評価」を踏まえて、「震源断層を特定した地震の強震動予測手法(「レシ ピ」)」に基づいて日向灘で発生する地震の強震動評価を実施した。

1 想定する震源断層

日向灘で発生する地震は、フィリピン海プレートが陸側のプレートの下に沈み込 むことに伴って、これら2つのプレートの境界面で発生するプレート間地震である。

「長期評価」によると、想定地震の震源域の範囲(図1青線の扇形領域)で発生 すると考えられる地震の最大規模はマグニチュード(M)7.6 前後で、今後 30 年間 の発生の可能性は10%程度である。

本報告では、「長期評価」を参照し、震源断層として、最新の活動である 1968 年 日向灘地震(M7.5、以下、ケース1という)と、1662 年の日向灘の地震(M7.6、以 下、ケース2という)の2つのケースを想定した(図1赤線の矩形領域)。震源断 層パラメータの設定にあたっては、ケース1では、「長期評価」の他、八木ほか (1998)⁴、Yagi and Kikuchi (2003)⁵を参照した。また、アスペリティ⁶に関するパ ラメータについては、震度分布と計算波形が観測記録と調和的となるように修正し た。ケース2では、観測波形が無く、震源におけるすべり破壊過程の解析ができな いため、「長期評価」の他に、津波の波源域の情報と重力異常分布図を参考に震源 断層の位置を決定し、その他のパラメータは、「レシピ」に従って設定した。

設定した震源断層モデルを図2に、震源断層パラメータを表1に示す。

2 用いた地下構造モデル

地震波は、一般的には震源から上部マントルを含む地下を伝わり次第に減衰して いく。しかし、地震基盤⁷から工学的基盤⁸までの地下構造(以下、「深い地盤構造」

³ 地震調査委員会(2004):日向灘および南西諸島海溝周辺の地震活動の長期評価(平成 16 年 2 月 27 日公表).

⁴ 八木勇治・菊地正幸・吉田真吾・山中佳子(1998):1968 年 4 月 1 日,日向灘地震(M_{JMA}7.5)の震源 過程とその後の地震活動との比較,地震第 2 輯,51,139-148.

⁵ Yagi, Y. and M. Kikuchi (2003) : Partitioning between seismogenic and aseismic slip as highlighted from slow slip events in Hyuga-nada, Japan, Geophysical Research Letters, Vol.30, No.2, 1087, doi:10.1029/2002GL015664, 59 - 1-4.

^{*} 震源断層面の中で特に強い地震波が発生する領域(すべり量や応力降下量が大きい領域)。

⁷ S 波速度 Vs = 3km/s 程度の堅固な岩盤。今回の評価範囲では Vs = 3.1km/s (Vp = 5.5km/s) 層の上面 に相当する。陸域では地下数 km の深さに、海域では地下数 km ~ 数十 km の深さに存在する。

という)の影響、及び工学的基盤から地表までの地下構造(以下、「浅い地盤構造」という)のごく地域的な影響により増幅される。このため、想定する震源断層 を含む強震動評価範囲の地下構造モデルを既存の地下構造探査データ等により作成 した(図3、図4参照)。

上部マントルから地震基盤までの地下構造モデルについては、 Zhao and Hasegawa(1993)⁹を参照した。

「深い地盤構造」については、より強震動評価に適した地下構造モデルとするた め、既往の地下構造探査結果等を参考に地下構造モデルを作成した後、最近観測さ れた地震記録を用いてモデルの修正を行った。その修正により、観測記録を参照し た幾つかの評価地点では、計算波形が改善された(図19、説明文参照)。「深い 地盤構造」の修正後の三次元地下構造モデルを、修正前と比較して図4に示す。モ デルの修正により、形状がやや複雑になっていることが分かる。また、宮崎平野周 辺では、各層の上面の深さがやや浅くなっている(図4、図20参照)。強震動評 価範囲の「深い地盤構造」の特徴として、宮崎県では、プレートの沈み込みに伴っ て、ほぼ全域で地震基盤(Vp=5.5km/s 層)が深く、特に南部では、内陸部から海側 40km 付近まで、深さ約 10km を越える窪みが認められる。宮崎県を除く陸域では、 地震基盤が深さ数 km 程度と比較的浅い。工学的基盤(Vp=1.6km/s 層)については、 筑紫平野、熊本平野等の平野部でやや深い地域が認められる(図4-3参照)。

「浅い地盤構造」については、実際の地盤構造の複雑さに比べて地盤調査データ が少ない上、そのデータが都市部に集中するなど偏在しているため、面的に詳細な モデル化が難しいことから、速度構造モデルを作成せず、工学的基盤から地表まで の最大速度の増幅率を地形分類データに基づいて評価した。図5に、「浅い地盤構 造」における最大速度の増幅率の分布図を示す。これより、宮崎平野、延岡平野、 及び有明海から八代海にかけての沿岸部等で増幅率の高い地域が認められる。また、 評価領域の大半を占める山間地では0.9倍~1.2倍程度と増幅率は比較的小さい。

3 強震動予測計算

本報告では、震源域付近の海域から陸域までの三次元地下構造モデルがある程度 の精度で構築されていることから、「詳細法」として、統計的グリーン関数法¹⁰と理 論的手法(三次元有限差分法)によるハイブリッド合成法¹¹を適用することとした。

⁸ 建築や土木等の工学分野で構造物を設計するときに地震動設定の基礎とする良好な地盤のことで、 そのS波速度は、構造物の種類や地盤の状況によって異なるが、多くの場合、300m/s~700m/s程度 である。今回の評価範囲では、Vs=500m/s層の上面に相当する。

⁹ Zhao,D. and A. Hasegawa (1993): P-wave tomographic imaging of the crust and upper mantle beneath the Japan Islands, J. Geophys. Res., 98, 4333-4353.

¹⁰ 経験的に得られた平均的な特性を有する要素波を想定する断層の破壊過程に応じて足し合わせる方 法。半経験的な方法のひとつ。「レシピ」参照。

¹¹ 長周期成分を理論的手法、短周期成分を統計的グリーン関数法によりそれぞれ計算し、接続周期付 近でフィルター処理(マッチングフィルター)を施した上でそれらを合成し広帯域地震動を評価する 方法。今回の接続周期は2秒とした。説明文,及び「レシピ」参照。

ハイブリッド合成法を用いた海溝型地震の強震動予測は、2003 年(平成 15 年)十勝沖地震の検証¹²を除けば、地震調査委員会としては今回が初めての試みである。強 震動評価は、評価範囲を約1km四方の領域に分割して行った。

4 予想される強震動

図6、図8に詳細法による強震動予測結果を示す。ケース1(図6)では、高知 県の沖ノ島周辺で震度6弱、震源断層に近い延岡市から宮崎市にかけての沿岸部と 四国の南西端部で震度5強が予測された。ケース2(図8)では、第1アスペリティに近い宮崎平野の沿岸部で震度6弱が予測された。また、ケース1に比べて、ア スペリティが九州に近いこともあり、宮崎平野を中心に震度5強がケース1よりも 広く分布している。なお、両ケースとも、評価領域の大部分を占める山間地は震度 5弱~4に留まっている。

強震動予測結果の検証として、ケース1については、震度分布、時刻歴波形、及 び距離減衰式の比較、ケース2については、震度分布と距離減衰式の比較を行った。 ケース1について、図7に1968年日向灘地震の震度分布図を示す。これを図6と比 較すると、震度5、4の地域と強震動予測結果とは概ね対応している。ただし、高 知県の西端部では、強震動予測結果の方がやや大きめの震度となった。また、宮崎 や延岡等で得られた地表の観測波形と計算波形とを比較した(説明文参照)。その結 果、今回作成した三次元地下構造モデルが、地域によっては情報量の不足等により、 十分な精度を確保できていないこともあり、観測波形を十分に再現できなかった観 測点もあったが、総合的には両者は概ね調和的であった。ケース2について、図9 に1662年の日向灘の地震の推定震度分布図¹³を示す。これを図8と比較すると、強 震動予測結果の震度6弱~5弱の領域は、推定震度分布図における震度6、5の領 域と概ね対応している。

距離減衰式との比較では、両ケースとも概ね対応した結果が得られた(図31、 説明文参照)。

5 今後に向けて

日向灘の地震を想定した強震動評価を通して得られた今後の課題として、次の点が挙げられる。

これまで海溝型地震の強震動評価においては、過去の地震の震源特性を参考に震 源断層モデルを設定してきた。本検討では、過去に日向灘で発生した地震として、 1968 年と 1662 年の事例に基づく2つのケースを想定し、強震動評価を行った。し かし、長期評価によれば、次の日向灘で発生するプレート間地震は、震源断層(震 源域)が特定されていない。このような地震によって強い揺れに見舞われる可能性

¹² 地震調査委員会強震動評価部会(2004):2003年十勝沖地震の観測記録を用いた強震動予測手法の検証(平成16年12月20日公表).

¹³ 宇佐美龍夫(1996):新編日本被害地震総覧[増補改訂版],東京大学出版会.

を的確に把握するためには、これまでの手法に加えて、震源断層位置のばらつき等 の不確定性を考慮した強震動予測手法の検討が必要である。

「深い地盤構造」については、評価領域、及びその周辺で発生した中小地震の観 測記録を説明できるように三次元地下構造モデルを修正することを、今回初めて実 施した。その結果、計算波形などに改善が認められた。しかし、計算波形と観測波 形との比較においては、調和的でなかった地点があるなど、まだデータが不足して いる地域もあり、必ずしも全領域で十分な精度が確保された地下構造モデルにはな っていない。したがって、今後、さらにデータを蓄積し、それらを適切に用いて三 次元地下構造モデルを修正することが重要である。

また、海溝型地震の強震動予測では初めての試みとして、ハイブリッド合成法を 採用した。その結果、幾つかの観測点では、計算波形と観測波形との比較において、 調和的な結果が得られた。このことから、三次元地下構造モデルの精度が確保され ており、震源断層モデルが適切に設定できれば、海溝型地震に対してもハイブリッ ド合成法が適用可能であると考えられる。今後、さらに多くの海溝型地震に対して、 ハイブリッド合成法の適用について評価・検証し、「レシピ」の改良を行う必要が ある。

平成7年(1995年)兵庫県南部地震以降、地震観測網が飛躍的に拡充され、強震 動予測手法や震源断層パラメータの検証に有効な観測記録が多数得られてきている ことから、より高精度な検証ならびに三次元地下構造モデルの精度向上を進めるこ とができる環境が整いつつあると言える。さらに、海域の地下構造の解明も進めら れている。このような観測記録や調査結果を用いることにより、地下構造モデルの 精度向上とそれに伴う強震動予測精度の向上が期待される。

营源结性		ケース1(1968年日向灘地震)		ケース2(1662年の日向灘の地震)		
(2013) 12 (2014)		設定値	備考	設定値	備考	
			32.38	<u> </u>	32.05	<u> </u>
I			204 ~ 241		188 ~ 205	
			9~17	フィリピン海プレート	13 ~ 33	フィリピン海プレート
		長さL(km)	64	上面に沿った面	i 75	上面に沿った面
		帕W(km)	48	(矩形ではない)	50	(矩形ではない)
巨視的震源特性		<u>上端次さd(KM)</u> 紫屏英 誌 2(Im ²)	2092		20]
		<u></u>	3082		4073	-
		(MPa)	3.4	$\frac{3/2}{3}$	3.4	$\sqrt{(1998)}$
		地震モーメントMo(Nm)	2.40E+20	MO=167(7・ ⁵²)・ ・ S ^{3/2} (S= R ²) 「レシピ」(24)式	3.64E+20	MO=167(7・ ³²)・ ・ S ^{3/2} (S= R ²) 「レシピ」(24)武
		モーメントマクニ チュードMw	7.5	logMo=1.5Mw+9.1	7.6	logMo=1.5Mw+9.1
		S波速度Vs(km/s)	3.75	八木ほか(1998)	3.75	八木ほか(1998)
		<u>平均密度 (g/cm³)</u>	3	八木ほか(1998)	3	八木ほか(1998)
		<u>剛性率 µ (N/m²)</u>	4.2E+10	$\mu = Vs^2$	4.2E+10	$\mu = Vs^2$
	1	半均すべり量D(m) 販展会体の短月期レベ	1.85	Mo=µDS 'レジヒ」(5)式	2.12	Mo= μ DS 'レジヒ」(5) 元
微視的震源特性	全アスペリティ	副層主体の短周期レベ ルA(Nm/s ²)	-	-	3.78E+19	A=2.46×10 [°] ×Mo [°] °° (ただし、cqs単位系)
		全アスヘリティの面積 S _a (km ²)	803	観測波形が合うように修正	1344	S_a r ² , r=7 /4 · Mo/(A · R) · ²
		全アスペリティの平均 すべり量D _a (m)	3.69	D _a =D×2 「レシピ」(10)式	4.23	D _a =D×2 「レシピ」(10)式
		全アスペリティの地震 モーメントMo _a (Nm)	1.25E+20	Mo _a =µD _a S _a 「レシピ」(11)式	2.40E+20	Mo _a =µD _a S _a 「レシピ」(11)式
		アスペリティの静的応 力降下量 _a (MPa)	-	-	10.4	_a =(7/16)×Mo/(r ² ×R) 「レシピ」(15-2)式
		アスペリティの個数 (個)	2	-	2	-
	第1アスペリティ	アスペリティの面積 S _{a1} (km ²)	390	S _{a1} :S _{a2} 1:1	913	S _{a1} :S _{a2} 2:1
		アスペリティの平均す べり量D _{a1} (m)	3.64	D _{ai} =(1/ i ³)D _a 「レシピ」(14)式	4.68	D _{a1} =(1/ i ³)D _a 「レシピ」(14)式
		アスペリティの実効心 力 _{a1} (MPa)	13.1	観測波形が合うように修正 (S/Sa× として算定)	10.4	a1 ⁼ a
		アスペリティの地震 モーメントMo _{a1} (Nm)	5.98E+19	Mo _{a1} =µD _{a1} S _{a1} 「レシピ」(11)式	1.80E+20	Mo _{a1} =µD _{a1} S _{a1} 「レシピ」(11)式
	第2アスペリティ	アスヘリティの面積 S _{a2} (km ²)	413	S _{a1} :S _{a2} 1:1	431	S _{a1} :S _{a2} 2:1
		アスペリティの平均す べり量D _{a2} (m)	3.74	D _{a2} =(2/ i ³)D _a 「レシピ」(14)式	3.22	D _{a2} =(₂/ i ³)D _a 「レシピ」(14)式
		アスペリティの実効応 力 _{a2} (MPa)	26.2	観測波形が合うように修止 (_{a2} =2× _{a1} として算定)	10.4	a2= a
		アスペリティの地震 モーメントMo _{a2} (Nm)	6.52E+19	Mo _{a2} =µD _{a2} S _{a2} 「レシピ」(11)式	5.85E+19	Mo _{a2} =µD _{a2} S _{a2} 「レシピ」(11)式
	背景領域	背景領域の地震モーメ ントMo _b (Nm)	1.15E+20	Mo _b =Mo-Moa 「レシピ」(12)式	1.24E+20	Mo _b =Mo-Mo _a 「レシピ」(12)式
		肖景領域の面積 S _b (km ²)	2279	S _b =S-S _a	2735	S _b =S-S _a
		背景領域のすべり量 D _b (m)	1.20	Mo _b =µD _b S _b 「レシピ」(13)式	1.08	Mo _b =µD _b S _b 「レシピ」(13)式
		背景領域の実効応力 _b (MPa)	2.0	_b =(D _b /W _b)×(π ^{1/2} /D _a)×r×Σγ _i ³ × a (a=13.1) 「レシピ」(18)式	1.44	_b =(D _b /W _b) × (π ^{1/2} /D _a) × r × Σγ _i ³ × a (a=10.4) 「レシビ」(18)式
	f max(Hz)		13.5	地震調査委員会 強震動評価部会	13.5	地震調査委員会 強震動評価部会
震源特性		S波速度Vs(km/s)	3.75	八木ほか(1998)	3.75	八木ほか(1998)
		破壊伝播形式	概ね同心円 状	-	概ね同心円 状	-
		破壊伝播速度Vr(km/s)	2.7	Vr=0.72Vs 「レシピ」(23)式	2.7	Vr=0.72Vs 「レシピ」(23)式

表1 日向灘の地震の震源断層パラメータ