3. 研究報告

- 3.1.断層帯の三次元的形状・断層帯周辺の地殻構造解明のための調査観測
- 3.1.1.制御震源地震探査等による断層形状の解明

目次

(1) 業務の内容

- (a) 業務題目
- (b) 担当者
- (c) 業務の目的
- (d) 3 ヵ年の年次実施業務の要約
 - 1) 平成24年度
 - 2) 平成25年度
 - 3) 平成26年度
- (e) 平成26年度業務目的
- (2) 平成25年度の成果
 - (a) 業務の要約
 - (b) 業務の方法と成果
 - 1) 重力測定による立川断層帯周辺の地下構造の検討
 - 2) 立川断層南部の反射法地震探査
 - 3) 浅層三次元反射法探査の解析
 - (c) 結論ならびに今後の課題
 - (d) 引用文献
- (3) 平成26年度業務計画案

(1)業務の内容

(a) **業務題目** 制御震源地震探査等による断層形状の解明

(b) 担当者

所属機関	役職	氏名
国立大学法人東京大学地震研究所	教授	佐藤 比呂志
国立大学法人東京大学地震研究所	助教	石山 達也
国立大学法人東京大学地震研究所	助教	蔵下 英司

(c) 業務の目的

立川断層帯の断層形状把握のために、断層の中央部で制御震源による三次元反射法地震 探査・二次元深部反射法探査を行い、断層帯の形状・構造を解明する。断層帯南部におい ては、伏在部を含めて断層の広がりと形状を明らかにするために、稠密重力探査を行う。

(d) 3ヵ年の年次実施業務の要約

1) 平成24年度: 立川断層が通過する真如苑プロジェクト用地(旧日産自動車工場跡地) において、断層の三次元形状・三次元的な変位量を明らかにするために、300 m×660 m 領 域で、受振・発震点の間隔が約10 m の高分解能三次元反射法地震探査を行った。

2) 平成25年度: 立川断層帯周辺において重力探査を行い、断層の位置と大局的な地 下構造を明らかにした。断層帯南部において高分解能反射法地震探査を行い、断層の 存否についての検討を行った。

3) 平成26年度: 立川断層中北部において反射法地震探査を実施し、断層の形状を明 らかにする。断層帯周辺の密度構造モデルを作成し、断層の広がりと形状を明らかに する。

(e) 平成25年度業務目的

断層の位置と大局的な地下構造を明らかにするために、断層帯周辺において重力探 査を行う。断層帯南部において高分解能反射法地震探査を行い、断層の存否について の検討を行う。

(2) 平成25年度の成果

(a) 業務の要約

断層帯周辺の既存の重力データのコンパイルとともに、166点において重力値の測定を 行い、プーゲー重力異常値、それらの一次微分を求めることにより、地下の密度構造につ いての基礎的な検討を加えた。立川断層南部での断層の存否を確認するために、立川市・ 日野市の富士見台測線と、多摩川河川敷の一ノ宮測線において、10m間隔の受発震での高 分解能反射法地震探査を行った。これらの反射法地震探査断面では、明瞭な断層は確認で きなかった。

(b) 業務の方法と成果

1) 重力測定による立川断層帯周辺の地下構造の検討

a) 既存研究と研究目的

関東平野のような厚い堆積物に覆われた地域では、断層の広がりや傾斜・変位量を明ら かにするために、重力探査が有効である。立川断層周辺においても重力測定に基づいて断 層の位置や形状、変位のセンスなどの研究が行われている(萩原ほか(1988),萩原(1989), 萩原ほか(1997))。日本列島の重力値については、(独)産業技術総合研究所((旧)地質調 査所)などの研究グループによってコンパイルされ、立川断層帯周辺のデータについても収 録されている(産業技術総合研究所地質調査総合センター編,2004)。ここでは、より詳細 な断層帯周辺の密度構造を推定するための基礎資料として、新たに166点での観測を行い、 ブーゲ異常値を求め初歩的な解析を行った。

b) データ取得

対象範囲は飯能市、入間市、青梅市、所沢市、瑞穂町、武蔵村山市、福生市、あきる野 市、東大和、八王子市、立川市、日野市、稲城市、町田市にまたがる立川断層位置周辺地 域(図 1)である。既存データの観測地点を考慮し、データが不足している 166 地点で観測 を行った(図 2)。測定は、三井金属資源開発(株)によって実施された。重力測定には La-Coste & Romberg 社製 G 型重力計(G-366)を用いた。各測定点においては、測定回 数 3 回以上、読取値が±10µGal 以内で再現できるまで測定を繰り返して測定を行なった。 重力計確認作業として、調査地内の重力基準点において、毎日の測定の開始及び終了時に 比較測定を行い、重力計のドリフトや閉塞誤差を求め、その値が許容範囲(±100µGal)であ ることを確認した。調査地周辺で,国土地理院が 1970年以降に重力値を測定した水準点 の中から,基準点を選定した(重力点(GR1533964-KWG)と一等水準点基準点(第118-1号))。 観測された測定値について、潮汐補正、器械高補正、ドリフト補正を実施した。基準点の 重力値に,計測された重力差を加算して,本調査地域の各測定点における日本重力基準網 に準拠した重力絶対値を求めた。

測定点の位置測量は, GNSS(Global Navigation Satellite Systems)受信機(TOPCON Hiper GGD)を用いて GNSS 測量を行い, 10cm 以内の精度で測定点の位置を求めた。使用した方式は 2 周波 VRS(仮想基準点方式)-GPS 測量である。

c) 重力データ解析

i) 解析範囲と使用データ

解析範囲は、立川断層帯を含む東経139°10'~139°35',緯度35°35'~35°55'の範囲とした。 本調査で収集した166点の他、産業総合研究所がコンパイルした重力データ(産業技術総合 研究所地質調査総合センター(編),2004)に基づき、データ取得者(石油資源開発(株)、国際 帝国石油開発(株)、(独)産業技術総合研究所)の許可を得て、産業総合研究所から提供さ れたものを使用した。これらのデータについては、石油資源開発(株)、国際帝国石油開発(株)、

(独)産業技術総合研究所に提供いただき、編集作業については、(独)産業技術総合研 究所の伊藤 忍主任研究員の協力を得た。

測定データから算出した絶対重力値について、産業技術総合研究所地質調査総合センタ

ー(編)(2004)に記載されている既往重力データベース、および(独)産業技術総合研究所

図1 重力測点位置図。断層の位置は中田・今泉編(2002)による。

図2 対象範囲及び既往重力データ位置と現場測点位置図

より提供された非公開測定データとの整合性を確認し,系統的な誤差の有無を確認した。 図3に,既存データベースの絶対重力値と測定データから算出した絶対重力値の分布を示 す。測定されたデータはすべて,既存データの範囲内に収まっており測定および絶対重力 値への変換の妥当性を示している。

ii) ブーゲ異常図の作成

既往重力データおよび算出された重力絶対値を用いて,以下の手順で適切なブーゲー補 正密度を算出した後,グリッドサイズ200mのブーゲー異常図を作成した。

測定点の正規重力値の算出:測定点の位置から,その地点における正規重力値を計算した。

なお、正規重力値の計算は以下の条件で行った。

- · 測地系:日本測地系2000
- ·座標系:平面直角座標系 第IX系
- ・正規重力値:1980年測地基準系(GRS1980)に基づく値

測定点の地形補正(近傍・遠方地形補正):近傍・遠方での地形補正量の計算には, Nagy(1966)の手法を用いた。計算には以下の数値標高モデル(DEM)を使用した。

・測定点から1kmまで:国土地理院 基盤地図情報数値標高モデル(5mメッシュ)

・1km~60kmまで:国土地理院 数値地図(50mメッシュ)

なお、地形補正密度は、次項で述べるブーゲー補正の仮定密度と同じ値を仮定した。 ブーゲー補正の仮定密度の推定:本地域では、上記データを使用して解析対象地域内で実施した。g-H相関法による推定の結果、仮定密度を2.53(g/cm3)とした。Rikitakeの方法 (Rikitake et al., 1965)による地形補正密度(ρT)と最小自乗法で求めたブーゲー補正の仮 定密度(ρB)の関係を図4に、またg-H相関図を図5に示す。

ブーゲー異常の算出:産業技術総合研究所地質調査総合センター(編)(2004)に収録され ている「利用プログラム」を使用し,解析範囲を含む範囲で,仮定密度(2.53g/cm3)のブー ゲー異常の200mグリッドデータを計算した(図6)。

iii) 残差重力異常図の作成

作成されたブーゲー異常図に対して、周波数解析を実施し残差重力異常図を作成した。 周波数解析: ブーゲー異常に対して2次元FFTを用いた周波数解析を行い、除去すべき長 波長ブーゲー異常に対応するカットオフ波長を算出した。ブーゲー異常のパワースペクト ルからの深度推定図を図7及び図8に示す。深度推定図で約5.6kmで傾斜が変化しており、 この深度に対応する波数は、7.0×10⁻⁵(cycle/m)となっている。この波数をカットオフ波数 とした。なお、この波数に対応する波長は、1/7.0×10⁻⁵ k m ≒ 14.3kmとなる。

残差重力異常の算出:カットオフ波数を7.0×10⁻⁵(cycle/m)としたハイパスフィルタリング により残差重力異常を算出した。残差重力異常図を図9に示す。波数 k(cycle/m)に対す るフィルタ関数には以下のものを用いた。

(NANZJANG-) L(k) = 0 (k $\leq k_1$) L(k) = 1 (k > k_1)

ここで k1 はカットオフ波数

iv) 浅部異常の抽出

残差重力異常図を対象として,鉛直1次微分,水平1次微分を実施し,構造境界に関する異常図を作成した。 残差重力異常の鉛直1次微分を図10に,水平1次微分を図11、12 に示す。また,ブーゲー異常の水平1次微分を図12、13に示す。

● DB絶対重力值 ◆ 測定絶対重力値

図3既往重力データと現場測定データの絶対重力値分布図

図 4 地形補正密度(pT)と最小自乗法で求めたブーゲー補正の仮定密度(pB)の関係

図5g-H 相関図

図 6 ブーゲー異常図 (仮定密度 2.53g/cm₃)

図8ブーゲー異常のパワースペクトル

図 9 残差重力異常図 (仮定密度 2.53g/cm³)

図 10 残差重力異常の鉛直1次微分分布図 (仮定密度 2.53g/cm³)

図 11 残差重力異常の水平1次微分分布図 (仮定密度 2.53g/cm³)

図 12 ブーゲー異常の水平1次微分分布図 (仮定密度 2.53g/cm³)

d)重力解析から見た立川断層帯の構造

対象とした立川断層帯周辺の地域は、関東山地と関東平野の境界部に位置し、境界部に は南北走向の八王子構造線(Yabe and Aoki, 1926)が分布する。八王子構造線は対象域北部 の最も顕著な密度の急変帯をなしていて、ブーゲ異常図(図 6)、残差重力異常の鉛直一次微 分(図 10)では高重力部と低重力域の境界、残差重力やブーゲ異常の水平一次微分(図 11, 12) では、南北に伸びる顕著な急勾配ゾーンとしてマッピングされている。残差重力異常図(図 9)は、基本的な地殻構造のトレンドを示しており、北部で特徴的な南北方向の構造が、立 川断層周辺以南では北西・南東方向を示し、伊豆衝突帯の影響を示している。

立川断層は全体としては、この北西・南東方向のトレンドに平行していて、密度構造の方 向と調和的である。しかし、詳細に比較すると記載されている断層線は、密度構造とは一 致しない部分がある。名栗断層は、ブーゲ異常図(図 6)やブーゲ異常の水平一次微分(図 13) でも、明瞭な線状の構造は認められない。先第三系中の断層であり、顕著な密度構造の異 常を示さないことに由来すると判断される。立川断層は、中部ではブーゲ異常の急変帯の 西側に位置している。ブーゲ異常の水平一次微分(図 13)では、立川断層中部の図 13 の a からbまでは、大局的にはブーゲ異常の急変帯の西側に位置するという点で密度構造と相 関がある。しかしながら、bより南方では重力との対応は見られない。この傾向は多摩川 流域を含む地域でも同様であり、少なくとも重力異常の観点からは断層が延長している構 造は認められない。また、a地点の北西延長については、重力の急変帯の西側に位置する という構造上の特徴はなくなり、断層線は重力的には尾根状の高まりを横断して北西方向 に延長されている。

立川断層周辺の重力構造の詳細を検討するには、残差重力の水平一次微分が適している (図 14)。この図では、より詳細に見ると一つの連続に見える立川断層中部についても、図 中の矢印 A で示される WNW-ESE 方向と B の NW-SE 方向の断層から構成されている可 能性が読み取れる。この図で示した矢印 A と B の間は、立川断層北部の変動地形的に断層 線が不明瞭になる領域と一致しており、立川断層のセグメンテーションを明らかにする上 での重要な拘束条件を与えている。

c) 立川断層帯と重力異常の関係についてのまとめ

立川断層帯と周辺の重力異常の関係は次のように、とりまとめられる。

- 名栗断層周辺では断層を示唆する重力的な特徴は見られない。
- ・ 立川断層中部では、断層は大局的にはブーゲ異常の急変帯の西側に位置している。詳細には、北西・南東方向と西北西・東南東方向の断層から構成されている可能性がある。
- ・ 立川断層の南部では、断層の存在を示す重力的な構造が見られない。

図 13 ブーゲー異常の水平1次微分分布図 (仮定密度 2.53g/cm³) グレースケール表示。 図中の a, b の間は急変帯の西側に断層線が位置する。

図 14 残差重力異常の水平1次微分分布図 (仮定密度 2.53g/cm³) グレースケール表示。 図中の矢印 A, B は、立川断層周辺の線状構造。

2) 立川断層南部の反射法地震探査

a) 調査地域の地質概要

立川断層の南部は、立川面上の変位地形によって断層が認定されている(山崎, 1978、 関口ほか, 1996 など)。また、この断層から多摩川を隔てた落川・一の宮遺跡において、 約 1000 年前の地層に変位を与える垂直な傾斜の断層露頭が見いだされ、立川断層の南方 延長の可能性が指摘されている(東郷ほか, 1996)。しかしながら、これらの断層を示唆す る地球物理学的な根拠は得られていない。2013 年に実施した立川断層主部に相当するとさ れてきた真如苑プロジェクト用地における榎トレンチにおいて、明瞭な断層が現れなかっ たことから、立川断層の南部の活断層の存否についても、より厳密な検討が必要となった。 このため、断層南部で立川面上に段差がある立川市及び国立市の市街地を通る約1.3km の 富士見台測線と、日野市と多摩市にまたがる約 2.1km の一ノ宮測線において、高分解能反 射法地震探査を行った (図 15)。富士見台測線 (図 16) は立川面上に位置し、一ノ宮測線 (図 17) は沖積面上に位置する。段丘堆積層の下位には、上総層群が分布する(柳沢ほか, 2005)。

- b) データ取得
- i)調査測線

調査測線は、北側の富士見台測線と多摩川沿いの一ノ宮測線からなる(図15)。富士見台 測線は、立川市及び国立市の市街地をほぼ東西に横断する約1.3km の区間に設定した。測 線西端を立川市錦町3 丁目の立川市市民会館として市道沿いに東進し、合同庁舎、立川病 院前からJR 南武線踏切を横断し、国立市西町に位置する郵政大学校の南側に至る区間で ある。一ノ宮測線は、日野市と多摩市にまたがる浅川及び多摩川の南岸に設定した。それ ぞれの測線で、受振点番号は西端の起点番号を1 として番号を設定し、発震点は各受振点 の中点で行った。両測線で独立型受振システム(GSR)を10m 間隔で設置し、固定展開での データ取得を行った(表1)。

測線名	富士見台	一ノ宮
設置期間	2014年2月19日-2月21日	2014年2月21日-2月24日
測線長	約1.3km	約2.1 km
受振器	ジオフォン SM24(10Hz)	ジオフォン SM24(10Hz)
受振器/点	3 個組	3 個組
探鉱機	GSR(Geospace inc.)	GSR(Geospace inc.)
受振点間隔	10m	10m
チャンネル数	136	210

表1 受振展開仕様一覧

図16 富士見台測線詳細図

図17 一ノ宮測線詳細図

ii) 測量作業

標準 10 m 間隔で、受振点・発震点の位置を木杭・鋲・マーカースプレーで標示した。 受振点、発振点の位置および標高値は RTK-GPS(VRS 方式)により求めた。

iii)データ取得作業

反射法地震探査では、富士見台測線では中型バイブロサイス車1台、一ノ宮測線では2 台を震源として用いた。受振点間隔10m、発震点間隔10m、固定展開でのデータ取得を 行った。受振器は、Geospace Inc.の単チャネル独立型レコーダーGSRを使用した。受振 器は上下動受振器 SM-24の3 個組の受振器グループを用いた。データ取得仕様を以下に 示す。

- 発震系仕様
- ・震源 中型バイブロサイス車(Envirovib)

1 台(富士見台測線)、2台(一ノ宮測線)

- ・発震点間隔 標準10m
- ・スイープ長 12sec
- ・スイープ周波数 8~80Hz(Linear-up スウィープ,'Taper' 300 msec)
- ・スイープ回数 標準5 回
- ・総発震点数(実績)118 点(富士見台測線)311 点(一ノ宮測線)

受振系仕様

- ・受振器(ジオフォン) SM-24(10Hz)
- ・受振器数/受振点 3 個(SM-24..3S)
- ・受振アレイ長 バンチング
- ・受振点間隔 標準10m
- ・展開長 約1.3km (富士見台測線) 約2.1km (一ノ宮測線)
- ・展開パターン 固定展開
- ・総受振点数 136 点 (富士見台測線) 210 点(一ノ宮測線)

記録系仕様

- ・探鉱機 GSR(独立型受振システム,連続観測)
- ・サンプル間隔 2msec
- ・記録長 3 sec(相互相関後)
- ・チャネル数 136 (富士見台測線) 210 (一ノ宮測線)

iv) 取得データ

図18に富士見台測線で取得された発震記録例を、図19 に一ノ宮測線で取得された発震 記録例を示す。また、図20 には富士見測線でのバックグラウンドノイズの空間時間変化 を示し、図21 には一ノ宮測線でのバックグラウンドノイズの空間時間変化を示す。この 図から、富士見測線では比較的交通量も多く、測線全体にわたってノイズレベルが大きい ことが分かる。また時間帯によるノイズレベルの変化が小さいことも確認できる。一方、 ーノ宮測線では河川敷の道路に設置しており、車道や住宅からの距離も離れているので、 ノイズレベルが富士見測線に比べ20-30dB 小さくなっている。

図18 富士見台測線の発震記録例。 VP78.5 AGC: 600 msec バンドパスフィルター 10/12-75/80 Hz

図19 一ノ宮測線の発震記録例。 VP23.0 AGC: 600 msec バンドパスフィルター 10/12-75/80 Hz

図20 富士見台測線のバックグラウンドノイズの時間空間変化

富士見台測線で取得された記録に関しては市街地での発震・受振のため、ノイズレベル が比較的高く、測線全域にわたって初動が到達している発震記録は見られない。また表面 波がほぼ全ての発震記録に混入しているのが見られる。この測線では道路と民家などが近 接しているため、ほぼ全ての区間でLow-Force での発震しか行うことができなかった。

ーノ宮測線では中型バイブロサイス車2台での発震作業を行ったことに加え、受振点が 民家・車道から離れた位置に設置されていたため、ノイズレベルも低く、ほぼ全発震記録 において測線の全域にわたって見かけ速度約1700m/sec の初動を確認することができた。 また、ほぼ全発震記録で往復走時0.9sec 付近に強い反射イベントが見られ、一部の記録で は0.4-0.8sec 付近にも反射波を確認することができる。

v) データ解析

両測線についてのデータ解析は、一般的な共通反射点重合法により、表2に示したパラメ ーターを用いて実施した。解析は、(株)地球科学総合研究所のSuper Xを用いて行った。 フォーマット変換及びデータ編集:フィールドデータに記録された原記録(GSR Original Format)について、SuperX(JGI InternalFormat)フォーマットへ変換を行った。その際、 全て発震記録毎にノイズエディットを伴う垂直重合を行い、バイブレータのリファレンス 波形との相互相関処理を行った。

トレースヘッダーへの測線情報の入力: SuperX トレースヘッダーに関して、発震点,受振 点及び各CMP のインデックス,座標,標高値,オフセット距離,基準面標高値等の測線情 報を入力した。データ解析における基準標高面は平均海水面に設定した。

屈折波初動解析:改良型タイムターム法による屈折初動解析を行い、受振点及び発震点タ イムターム値と表層基底層速度を算出した。富士見測線については、図22に示す。表層速 度として受振点側及び発震点側共に500m/sec を採用した。

最小位相変換:バイブレータ発震記録について、零位相であるバイブレータ震源のスウィープ波形について、最小位相変換処理を適用した。

ノイズ抑制処理のテスト: 富士見台測線で取得されたデータでは、調査測線全域において 見かけ速度の遅い表面波が確認された。これらの除去を目的に、各種のノイズ抑制処理の テストを行った。この結果、重合記録において 往復走時1.0sec 付近に見られるイベント に関してはノイズ抑制処理による効果が確認できるが、一部では虚像と思われる傾斜した イベントも抽出されたため、本解析作業ではノイズ抑制処理は適用していない。

振幅補償: Instantaneous AGC(自動振幅補正) [ウィンドー長......400msec] **デコンボリューション**: 表2示すデコンボリューションを適用した。

共通反射点編集:浮動基準面に対する静補正:浮動基準面に対する静補正を実施した。

図22 改良型タイムターム法により推定された富士見台測線沿いの表層構造図

表2 富士見台測線・一ノ宮測線のデータ解析パラメーター。

富士見台測線

一ノ宮測線

フォーマット変換及びデータ編集			
解析対象の発震点範囲	VP.1-VP.135	VP.1-VP.210	
有効発震点数	高分解能反射法発震点 118点	高分解能反射法発震点 311点	
トレースヘッダーへの測線情報の入力			
CMP間隔	5.0m	5.0m	
CMP節囲	1 - 273	1 - 415	
	1 10	1 110	
重合測線からの最大許容偏倚	制服無	制限無1	
国行和動解析	introduce.	in the second seco	
品に知動書な販加な担	エのピーカ片要	エのピール位置	
屈払油 ハバージョン中佐ナフセル 笹田	20 - 920	20 - 220	
本切扱インバーンヨン 美肥イノビット範囲 主展其底油度を求める際の空間ブロック目	50° 220m	50° 220m	
衣宿本風座及を木める际の王间ノロクク衣 伝伝法論	50011	500m	
版唱相值 48 /			
送何減衰補償 ▲ C C 注田 ば し E	-		
AGC適用ゲート長	400msec	400msec	
デコンボリューション			
バイブレータスウィーブ波形位相処理	最小位相変換	最小位相変換	
アルコリスム	時間領域トレース単位テコンホリューション	時間領域トレース単位テコンホリューション	
前提とするウェーブレット位相	最小位相	最小位相	
予測距離	2msec	2msec	
零オフセット位置におけるゲート開始時刻	0msec	Omsec	
ゲート長	2000msec(Non-TV)	2000msec(Non-TV)	
オペレータ長	120msec	120msec	
プリホワイトニングファクター	0.5%	0.5%	
浮動基準面に関する静補正			
補正内容	表層補正及び標高補正	表層補正及び標高補正	
浮動基準面の定義	長波長標高変化	長波長標高変化	
速度解析			
解析内容	重合速度	重合速度	
解析点間隔	50m	100m	
解析速度数	50(1200-3300m/sec)	50(1400-3300m/sec)	
残差静補正			
アルゴリズム	Linear Traveltime Inversion	Linear Traveltime Inversion	
時間シフトの最大許容値	4msec	4msec	
時間ウィンドー	40 - 400msec	50 - 1200msec	
CMP重合			
NMOストレッチファクター	2.0	2.0	
重合前振幅調整	AGC 100msec	AGC 100msec	
Outer Mute	Snace Variant	Snace Variant	
	team scaling	space variant	
周波数・空間領域予測フィルター	tisam stama	isem stanne	
内辺気 王尚県気1 (6) イバック 空間オペレータ長	5CMPa	5 CMPa	
エ间ス マレ ノ 民 の問う ハ ボー 手	25CMDa	20 CMPa	
	500mmers	30 CMPs	
	sto	500msec	
	ZəUmsec	250msec	
帝政連週ノイルター	100	100	
スペレータ長	400msec	400msec	
向 波 数 通 適 帝 或	0 - 50msec : 30/35 - 70/80Hz	0 - 50msec : 22/25 - 70/80Hz	
	50 - 150msec : 25/35 - 70/80Hz	50 - 150msec : 20/25 - 70/80Hz	
	150 - 450msec : 20/30 - 70/80Hz	150 - 350msec : 18/22 - 70/80Hz	
	350 · 3000msec : 18/25 · 50/70Hz	350 - 3000msec : 12/20 - 50/70Hz	
時間マイグレーション			
アルゴリズム	時間-空間領域差分法マイグレーション	時間・空間領域差分法マイグレーション	
下方接続ステップ幅	2msec	2msec	
最大アパチャー範囲	-		
反射面最大傾斜角度	45度	45度	
速度モデル	重合速度スケーリング:なし	重合速度スケーリング:なし	

重合速度解析:速度重合法による速度解析を実施した。尚、残差静補正後に再解析がなされている。

NMO 補正: 速度解析によって求められた重合速度-時間の関数を時間-空間方向に内挿し、 その速度テーブルに従ってNMO 補正を適用した。同時に、下記のストレッチミュートを 実施した。

重合前振幅調整:トレース間の振幅バランスを調整するため、自動振幅調整による振幅補償 を行った。

残差静補正:

時間シフトの最大許容値......2 msec

時間ウィンドー..... 40-400msec

ミュート:NMO 補正に伴う波形の伸長及び'Far'オフセット側に残留する屈折波初動部分 を抑制する目的で、ミュート処理を全CMP アンサンブルについて設計して、適用した。 共通反射点重合:NMO 補正及び残差静補正適用後の共通反射点アンサンブルに関して水 平重合処理を実施した。

周波数-空間領域予測フィルター:周波数-空間領域において複素型予測フィルターを設計, 適用して、ランダムノイズを抑制し相対的にS/N を向上させるF-X 予測フィルター処理を 実施した。

重合後時間マイグレーション:時間断面上の反射点位置を実際の位置に移動させ、回折波 を回折点に復元することを目的として、重合後時間マイグレーションを適用した。差分マ イグレーションを用いた。

帯域通過フィルター:反射波の有効周波数帯域が周波数成分解析によって決定され、零位 相帯域通過フィルターを採用した。

基準面補正:浮動基準面から基準面への、時間補正が適用された。

深度変換:重合速度プロファイルから、時間及び空間方向に平滑化した平均速度分布を用いて、'Vertical Stretch'法による深度変換を実施した。

以上の処理を逐次経ることによって、図23・26のCMP重合処理断面図を作成した。また、 マイグレーション処理後に深度変換を実施した結果を、図24・27に示した。

vi) 断面の地質学的解釈

富士見台測線は、ノイズレベルが高く、また発震も制限されたため、反射法による地下 のイメージングについては、多摩川南岸の一ノ宮測線に比べ充分な解像度が得られていな い。ノイズ抑制フィルターを適応した断面では、深度 900m 程度のほぼ水平な反射面が認 められる(図 25)。この反射面は、ノイズ抑制フィルターを施さない深度変換断面でも、微 弱ではあるが測線を通じて認められる(図 24)。この反射面は、周辺のボーリング資料など から判断して(柳沢ほか, 2005; 鈴木ほか, 2008)、上総層群の堆積層と判断される。反射 断面の質から、断層の存否について高い精度での判断は難しいが、積極的に断層の存在を 示唆する根拠に乏しい。極浅層部では、地形的に推定された撓曲帯の周辺で傾斜が乱れて いる部分が存在する。しかし、極浅層部の反射面の傾斜から判断して、表層部の構造は CDP75 から東に傾斜しており、この付近から CDP150 付近までは、低下したような構造 を示している。タイムターム法から求めた表層の構造は、この区間で表層の低速度層が厚いことを示していて、立川断層の変位から推定される東側隆起の構造とは、調和しない。

図 23 富士見台測線の重合反射法時間断面

図 24 富士見台測線の重合後マイグレーション深度変換断面

図 25 富士見台測線マイグレーション深度変換断面(ノイズ抑制フィルター適応)

図 26 一ノ宮測線重合時間断面

ーノ宮測線では、良好な記録が得られており、地下 1.5 km を越える深さの地下構造が 明瞭に示されている。とくにこの断面では、上総層群に相当する多数の反射面群が得られ ている。柳沢ほか(2005)では、測線近傍の府中観測井のボーリング資料を解析し、深度 1km 付近に層準にほぼ 180 万年前に相当する CN13a/b 境界が位置することを明らかにしてい る。この測線の範囲内では反射面が連続しており、反射面を食い違わせるような規模の大 きな断層を推定することは困難である。他方、測線の近傍では落川・一の宮遺跡において、 1000 年前の放射年代を示す堆積物に高角度の断層が報告されている(東郷ほか、1996)。 発掘された断層の走向は、本測線に交わることから、発掘された断層は表層の現象である 可能性が高い。原因を特定することは困難であるが、大規模な液状化による側方移動など が、この断層の要因として推定される。

図 27 一ノ宮測線の深度変換断面

3) 浅層三次元反射法探査の解析

H24年度に東京都立川市と武蔵村山市に跨る真如苑プロジェクト管理地(旧日産村山工 場跡地)内の、立川断層が通過すると推定される 300 m×660 m 領域においてバイブロサ イスを震源とする浅層三次元反射法探査および浅層二次元三成分反射法探査を実施した

(図 28)。以下では、このうち浅層三次元反射法探査について、取得したデータの解析と 解釈について述べる。なお、データ取得については H24 年度報告書で述べたので、ここで は省略する。

浅層三次元反射法探査の処理のフローを図 29 に、処理パラメータを表 3 に示す。展開 範囲全域の 1931 点にて P 波発震を実施し、展開した全受振点にて良好なデータを得た。 解析は通常の共通反射点重合法に基づき、3D F-k filter など三次元データの利点を生かし た解析を行い、三次元の seismic cube を作成した(図 30)。処理の結果、地表から深さ 1000 m 程度まで、比較的連続性のよい複数の反射波が捉えられており、地下地質構造を 検討する良好なデータセットであると考えられる。 Seismic cube は 3 次元反射法解釈支援ソフトウェア上であらゆる方向の切断面を作成 することが出来るため、断層やホライゾンの3 次元的な形状や分布を検討することができ る。以下では、航測図化によって復元された地形(石山ほか、2013)やH24年度に真如 苑プロジェクト管理地内で掘削されたボーリング(鈴木、2013)や既存ボーリング資料を もとに、地下地質構造を予察的に検討した結果を述べる。

図 31 に、榎トレンチが位置する測線南端部の 2 次元スライスを示す。反射断面では、 見かけ上西向きの単斜構造が認められる。また、地表面から 40m ほどの深さに、単斜構造 を横断する強い反射面が認められる。敷地内の既存ボーリングや、榎トレンチの底面から 掘削したボーリング(鈴木、2013)によれば、このほぼ水平な反射面群の深度は、立川礫 層より下位に分布する中部更新統相当の砂礫層の基底面深度にほぼ一致する。また、撓曲 構造が認められる反射面群はこれより下位に分布する上総層群と対比される。上総層群と 中部更新統相当の砂礫層は不整合関係にあると考えられる。このような上総層群が参加す る単斜構造と、上総層群および中期更新統の間の不整合面に相当する構造は、今回得られ た 3D seismic cube から得られる垂直断面に共通して確認出来る。すなわち、この不整合 面は 3D seismic cube を解釈する上で有力な鍵層となりうる層準であり、その構造は中期 更新世以降の単斜構造の活動性を議論する上で有力な手がかりとなり得る。

また、図 32 には 3D seismic cube の 2 次元スライスと航測図化により復元した地形の 比較を示す。地形断面と反射断面を比較すると、立川断層の撓曲崖地形とされてきた崖地 形基部は、上総層群の参加する単斜構造西翼の中部あるいは上部に位置しており、上総層 群が参加する撓曲構造の向斜軸の位置は、必ずしも一致していないように見える。すなわ ち、立川断層の撓曲崖地形とされてきた崖地形は上総層群の単斜構造の成長に寄って形成 されたものとは考えにくい。

今後は、H25年度に掘削されたボーリングやOSL年代測定の結果(鈴木、2014,本報告)を考慮して、3D seismic cube と上総層群および中期更新統の対比を行い、不整合面の面的な分布・構造を明らかにして、中期更新世以降の単斜構造の活動性について検討を行う予定である。

36

図 28 浅層三次元反射法探査および浅層二次元三成分反射法探査の測線配置。黄 色の点は受振点位置を示す。青い枠線は榎トレンチの位置。赤線は中田・今泉編 (2002)による断層線、黒線は航測図化によって求めた地形改変前の等高線を示す。

図 29 浅層三次元反射法探査の処理フロー。

表 3	浅層三次元反射法探査の主な処理パラ	メ	ーター	• 。
-----	-------------------	---	-----	-----

	3次元浅層反射法測線
1フォーマット変換及びデータ編集	
受振点数	2077チャンネル(31ライン x 67チャンネル)
有効発震点数	バイブレータ発震 1931点
2トレースヘッダーへの測線情報の入力	
CMP 3D bin size	inline x crossline: 5m x 5m
CMP範囲	1 - 7920
	inline CDP60
	crossline CDP132
3屈折初動解析	
屈折初動読み取り位相	正のピーク位置
屈折波インバージョン実施オフセット範囲	50 - 180m
表層基底速度を求める際の空間ブロック長	500m
4初動ミュート	
ミュート開始位置	
テーパー長	
5コヒーレントノイズ抑制処理	
アルゴリズム	3D F-K Filter
適用帯域	NMO補正後 0-500m/sec
6振幅補償	
幾何減衰補償	
AGC 適用ゲート長	1000msec
7デコンボリューション	
バイブレータスウィープ波形位相処理	最小位相変換
アルゴリズム	Whitening Deconvolution
前提とするウェーブレット位相	最小位相
予測距離	2msec
零オフセット位置におけるゲート開始時刻	50msec
ゲート長	1600msec
ゲートタイプ	Non-TV
オペレータ長	120msec
プリホワイトニングファクター	0.5%

8浮動基準面に関する静補正	
補正内容	表層補正及び標高補正
浮動基準面の定義	長波長標高変化 (CDP平均)
9速度解析	
解析内容	重合速度
解析点間隔	inline : 100m, crossline : 100m
解析速度数	40(1400-6000m/sec)
10残差静補正	
アルゴリズム	Linear Traveltime Inversion
時間シフトの最大許容値	12 msec
時間ウィンドー	50 - 700 msec
11 CMP重合	
NMOストレッチファクター	1.5
重合前振幅調整	AGC 300msec
NMO後ミュート	
12 周波数・空間領域予測フィルター	
空間オペレータ長	5 CMPs
空間ウィンドー長	35 CMPs
時間ウィンドー長	1500msec
オーバーラップ長	1000msec
13 帯域通過フィルター	
オペレータ長	500msec
周波数通過帯域	20/22 - 58/60 Hz
14 時間マイグレーション	
アルゴリブル	3次元キルヒホッフ型
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	マイグレーション
Aperture距離	500 m
	重合速度スケーリング
速度モデル	0 - 5000 msec : 100%
15 深度変換	
深度変換サンプリング間隔	1m
	This is a second s

図 30 浅層三次元反射法探査の 3D seismic cube。

図 31 測線南端付近、トレンチ近傍における 3D seismic cube の 2 次元スライスとボー リングの比較。右下測線図の黄緑線が反射断面の位置にあたる。右上のボーリングは鈴 木(2013)による。

図 32 測線南端付近、トレンチ近傍における 3D seismic cube の 2 次元スライスと航測 図化により復元した地形の比較。右下測線図の黄緑線が反射断面の位置にあたる。

(c) 結論ならびに今後の課題

立川断層帯周辺の重力値のコンパイルと166点での計測を行い、得られたデータを基に 断層帯周辺の地下構造を推定した。立川断層中部では、ブーゲー異常の急傾斜帯の西側に 断層が位置するが、詳細には二つの異なる方向の断層から形成されている可能性が高い。 断層帯南部では、断層に対応する重力的な構造は見い出されなかった。

立川断層南部の二測線において、高分解能反射法地震探査を実施した。富士見台測線と 多摩川沿いの一ノ宮測線のいずれにおいても、断層に対応した地下構造を認識することが できなかった。上総層群中を含め、明瞭な断層が存在しない可能性が高い。

今後は、重力異常や H25 年度・H26 年度に取得される反射断面および既存資料を総合 的に検討し、断層帯の地下形状を明らかにする。

また、昨年度実施した浅層三次元反射法探査の解析を行うとともに、既存ボーリング資料や航測図化の結果との比較検討を試みた。その結果、ボーリングで認められる上総層群と中部更新統の砂礫層との境界面に対応する反射面が認められることや、変動地形学的な検討から推定されてきた崖地形と、上総層群の撓曲構造が必ずしも一連の構造運動によって形成されたものとは言えないことがわかった。今後は、H25年度に掘削されたボーリングの結果を考慮して、上総層群と中部更新統の砂礫層の間の不整合面の3次元的な形状を推定するほか、H24年度に取得した浅層三成分二次元反射法探査についてもデータ解析を進め、中期更新世以降の構造の成長について検討を行う。

(d) 引用文献

萩原幸男:立川断層は左横ずれか, 活断層研究, 6, 37-41, 1989.

- 萩原幸男・村田一郎・長沢 工・井筒屋貞勝・小竹美子・大久保修平:活断層の重力調査 (4)-立川断層の検出-.地震研究所彙報,63,115 ~ 129,1988.
- 萩原幸男・糸田千鶴・大木裕子・北村行範:重力異常からみた名栗断層の左横ずれ,活断 層研究,16,7-12,1997.
- 石山達也・東郷正美・佐藤比呂志・廣内大助・中山俊雄・長谷川 均・磯谷達宏・小野 勇: 断層帯の詳細位置・形状等および断層活動履歴・平均変位速度の解明,立川断層帯の 重点的な調査観測 平成25年度成果報告書, 22-34, 2013.
- Nagy, D. : The gravitational attraction of right rectangular prism: Geophysics, 31, 362-371, 1966.
- 中田 高・今泉俊文編:活断層デジタルマップ,東京大学出版会,2002.
- Rikitake, T., H. Tajima, S. Izutuya, Y. Hagiwara, K. Kawada and Y. Sasai, Gravimetric and geomagnetic studies of Onikobe area, Bull. Earthq. Res. Inst., 43, 241-267, 1965.
- 産業技術総合研究所地質調査総合センター編:日本重力CD-ROM第2版,数値地 質図P-2, 地質調査総合センター,2004.
- 関ロ辰夫・津沢正晴・中島秀敏・渡辺満久・今泉俊文:都市圏活断層図「青梅」, D1-No. 333, 国土地理院, 1996.
- 鈴木毅彦・村田昌則・大石雅之・山崎晴雄・中山俊雄・川島眞一・川合将文, テフラ編年 による立川断層活動史の復元, 第四紀研究, 47, 103-119, 2008.

鈴木毅彦: 3.2.2. 断層帯の平均変位速度・累積変位量の解明のための高精度火山灰編年調 査, 立川断層帯の重点的な調査観測 平成 25 年度成果報告書, 35-49, 2013.

東郷正美・佐藤比呂志・池田安隆・松多信尚・増淵和夫・高野繁昭:立川断層の最新活動 について,活断層研究,15,1-8,1996.

Yabe, H. and Aoki, R.: The great Kwanto earthquake of September 1, 1923, geologically considered. Annual Report Work of Saito Ho-Onkai, 1, 70-83, 1926.

柳沢幸夫・渡辺真人・高橋雅紀・田中裕一郎・木村克己・林 広樹: 3.2.4.大深度ボーリン グ資料による地質年代調査,大都市大震災軽減化特別プロジェクト 1 地震動(強 い揺れ)の予測「大都市圏地殻構造調査研究」(平成17年度)成果報告書,355-381, 2005.

山崎晴雄:立川断層とその第四紀後期の運動,第四紀研究,16,231-246,1978.

(3) 平成26年度業務計画案

反射法地震探査よって明らかにされている先第三系上面深度のデータも合わせて、得 られている重力値を元に、三次元密度構造モデルを作成し、断層の位置・形状の推定精度 を向上させる。立川断層の中北部で、反射法地震探査を実施し、断層の変位構造を明らか にし、断層の広がり・変位様式についての拘束条件を明らかにする。これらの成果をもと に震源断層の形状モデルを作成する。