3.2 地震発生予測のための活動履歴調査

(1) 業務の内容

(a) 業務題目 地震発生予測のための活動履歴調査

(b) 担当者

所属機関	役職	氏名
国立研究開発法人 産業技術総合研究所	主任研究員	吾妻 崇
同	主任研究員	中島 礼
同	主任研究員	重松 紀生
国立大学法人富山大学	准教授	安江 健一
同	准教授	立石 良
国立大学法人信州大学	教授	廣内 大助

(c) 業務の目的

屏風山・恵那山断層帯及び猿投山断層帯の複数地点において活動履歴調査を行い、それぞれの 断層帯の構成断層を明確にする。恵那山-猿投山北断層帯については、一括に活動した評価が現 在公表されているが、恵那山断層と猿投山北断層が別々に活動した可能性があるため、両断層に おいてトレンチ調査を実施して最新活動時期と平均活動間隔に関する情報を取得し、活動履歴に 基づく構成断層の検討を行う。また、トレンチ調査の結果から、過去の断層活動時におけるずれ 量に関する情報を取得し、地震規模推定の検討を行う。

(d) 3 ヵ年の年次実施業務の要約

1) 令和2年度:

恵那山-猿投山北断層帯において地形地質踏査を実施し、活動履歴調査を実施する地点 を選定した。同断層帯上の2地点においてトレンチ調査及びボーリング調査を実施した。 また、両地点で採取された試料について放射性炭素同位体年代測定を実施し、同断層帯の 活動履歴を検討した。

2) 令和3年度:

令和4年度に実施するトレンチ調査の実施地点及びトレンチの掘削規模等を決めるため、 地形地質踏査と予察的なボーリング調査を実施する。また、過去の断層活動におけるすべ り方向の履歴を明らかにするための露頭観察を実施する。

3) 令和4年度:

恵那山-猿投山北断層帯上の2地点においてトレンチ調査及びボーリング調査を実施し、 同断層帯の最新活動時期と平均活動間隔に関する情報を取得して活動履歴に基づく構成断 層の検討を行う。また、過去の断層活動時におけるずれ量に関する情報を取得し、地震規 模推定の検討を行う。

(2) 令和4年度の成果

(a) 業務の要約

恵那山-猿投山北断層帯上の2地点(東白坂地区、上手向地区)において、トレンチ調査を実施した。トレンチ壁面から採取した試料について放射性炭素同位体年代測定を実施し、それぞれの地点における活動時期を明らかにするとともに、これまでの調査成果と合わせて恵那山-猿投山北断層帯の活動履歴について検討した。また、令和3年度に阿木地点で掘削したボーリングコアについて火山灰分析を実施して地形面の形成年代を推定し、恵那山-猿投山北断層帯が活動する際の破壊開始点とそれに基づくセグメント区分の検討を行なった。それぞれの調査を実施した地点を図1に示す。また、既往文献による情報と本調査で得られた断層露頭のデータを整理し、屏風山断層、恵那山断層、猿投山北断層における断層面の傾斜角を検討した。

図1 令和4年度に調査を実施した調査地点位置図。 背景地図は、国土地理院が公開している「地理院地図」で作成した標高段彩陰影図に、 活断層トレースや自治体の境界線を加筆して作成した。

- (b) 業務の実施方法
 - 1) ボーリング調査

令和3年度に阿木地点で掘削したボーリングコアについて火山灰分析を実施して地形面の 形成年代を推定し、恵那山-猿投山北断層帯の平均変位速度を検討した。

2) トレンチ調査

恵那山ー猿投山北断層帯上の2地点(東白坂地区、上手向地区)において、トレンチ調査 を実施した。トレンチ壁面から採取した試料について放射性炭素同位体年代測定を実施し、 それぞれの地点における活動時期を明らかにするとともに、これまでの調査成果と合わせて 恵那山ー猿投山北断層帯の活動履歴について検討した。

3) 火山灰分析

令和3年度に阿木地点で掘削したボーリングコアから採取した火山灰試料について、火山 灰の抽出、火山ガラスの屈折率測定、化学組成分析を実施し、検出された火山灰(AT火山 灰及び K-Tz火山灰)の降灰年代と層位に基づいて地形面の形成年代を推定した。

4) ¹⁴C 年代測定

恵那山-猿投山北断層帯上の2地点で実施したトレンチの壁面から採取した試料について 放射性炭素同位体年代測定を実施し、地層の堆積年代を推定した。

5) 断層活動履歴の検討

恵那山ー猿投山北断層帯上の2地点における活動時期を明らかにするとともに、これまで

の調査成果と合わせて恵那山-猿投山北断層帯の活動履歴について検討した。また、丸原鉱山(恵那市原地区)で断層面の条線を観察し、恵那山-猿投山北断層帯が活動する際の破壊 開始点とそれに基づくセグメント区分の検討を行なった。

6) 構成断層及び地震規模の検討

断層活動履歴の検討結果に加え、断層運動方向と断層形状(断層面の傾斜角)に関するデ ータを整理して、恵那山-猿投山北断層帯を構成する活断層およびその断層帯を震源として 発生する地震規模について検討した。

(c) 業務の成果

1) ボーリング調査

トレンチ掘削位置及び掘削深度を決定するため、事前にボーリング調査を計画したが、 新型コロナウイルス拡大による昨年度からの作業行程の遅れにより調査期間を短縮する必要 が生じたため、令和4年度においてはボーリング調査を実施せずに、トレンチ調査を集中的 に実施した。

2) トレンチ調査

恵那山-猿投山北断層帯上の2地点(東白坂地区、上手向地区)において、トレンチ調査 を実施した。

a)東白坂地区

猿投山北断層の東白坂地区(愛知県瀬戸市)に位置する東京大学生態水文学研究所赤津実 習林内においてトレンチ調査を実施した。この地区には、猿投山北断層に沿って直線的な谷 地形が連続する(図2)とともに、活断層を横切る水系に系統的な右横ずれが認められる

(鈴木・他, 2004; 鈴木・野澤, 2006)。

トレンチの掘削地点を選定するため、現地踏査を行なった結果、県道の北側を東から西へ 向かって流れ下る白藤川の左岸で断層露頭(図2の露頭 A)を発見した。断層露頭の写真を 図3に示す。この露頭で観察された断層面の走向・傾斜は、灰色の粘土を伴う連続性の良い 断層で N24°E・56°E、茶色の粘土を伴う連続性の良い断層で N18°E・52°E であった。断層と 地形面を構成する堆積物との関係は、植生に覆われていたため、直接確認することができな かった。なお、断層露頭の位置と走向の関係から、この断層は愛知県が 1996 年に掘削した トレンチやそのすぐ北側で令和2年度に掘削したトレンチで観察された断層には連続しない と推定される。

一方、県道よりも南側にある窯跡付近の沢では、断層破砕帯(図4)と谷底堆積物(図5)を確認できる露頭(図2の露頭B)を観察した。粘土化した破砕帯付近にはガリーが形成されて侵食が進んでおり、断層と谷底堆積物との関係を確認することはできなかった。

この沢の南西では、猿投山北断層に沿って沢が流れており、その河床において粘土化した 断層破砕帯を確認した(図2の露頭C)。しかし、破砕帯は粘土化が著しかったため、走向 や傾斜角など断層構造を示す情報を得ることはできなかった。

さらに南西には、猿投山北断層と平行して直線的な谷と尾根の地形が存在する。その周辺 において地形地質調査を実施したが、断層を観察できる露頭を見つけることはできなかった。

図2 猿投山北断層東白坂地区周辺の地形と露頭位置 白破線は、鈴木・野澤(2006)に示されている水系の屈曲を示す。

図3 白藤川左岸で観察された断層露頭(露頭 A)

図4 沢沿いで観察された断層露頭(露頭 B)

図5 沢沿いで観察された露頭(露頭 B)

現地踏査の結果を踏まえ、掘削地点は、1996年に愛知県がトレンチ調査を実施した地点の南側とした(図6)。トレンチの形状は、長さが約25m、幅が約8m、深さが約4mであ

る。表層の地層が非常に軟弱であったため、計画していたよりも法面の傾斜を緩くする必要 があり(図7)、北東壁面を成形することができなかった。そのため、全面的な観察は南西 壁面のみについて実施した。

図6 東白坂地区トレンチ掘削地点周辺の測量平面図。 青線は1996トレンチ、赤線は2020トレンチ、緑線は2022トレンチの掘削範囲を示す。

図7 東白坂地区で掘削したトレンチの全景。 南東側から北西側(上流側から下流側)を向いて撮影した。

通常のトレンチ調査では壁面の観察記録をスケッチで行なうが、今回は「PhotoScan」 (Agisoft 社製)を用いた写真画像合成によりトレンチ壁面に見られる地層構造を記録した (図8)。その結果、トレンチの形状や断層面の三次元構造が明らかになるとともに、位置 座標の情報を持たせることが可能になった。

作成した合成画像に、現地での観察結果を重ねた図を図9に示す。トレンチ壁面では、基 盤の花崗岩とそれを覆う堆積物が観察された。基盤の中に認められる断層破砕帯は幅約5 m 程度であり、その最も北西側(下流側)が最新に活動した断層面である。その断層面を挟ん だ両側で基盤の上面に約1 m の南東側隆起の高度差が認められた。底盤では右横ずれを示 す変形構造が確認された。トレンチ南西壁面で観察された断層面の上端は、谷状の構造に侵 食されており、谷を埋める堆積物によって覆われている。

図8 写真画像合成で作成した東白坂トレンチの三次元モデル。

図9 三次元モデルから作成した東白坂トレンチ南西壁面の正射投影画像。

b) 上手向地区

恵那山断層とされる区間の活動履歴を明らかにするため、上手向地区(恵那市山岡町)に おいてトレンチ調査を実施した。掘削地点の選定に当たっては、周辺に顕著な水系の右屈曲 が系統的に認められる地点周辺で、人工改変の影響を受けていないと思われる場所を選定し た(図10)。破砕された花崗岩と堆積岩が接する断層露頭(図10の露頭A、B:図11)が確 認されたこと、空中写真判読の際に恵那山断層の走向方向に伸びるリニアメントが圃場整備 前の水田の区割に認められたこと(図12)等が掘削地点決定の根拠となった。

トレンチは恵那山断層の走向と直交する方向に掘削された(図13)。長さは約16 m、幅約8 m、深さは最大約4 m とした。トレンチ壁面では、堆積岩からなる基盤、花崗岩の大礫を 多く含む崩壊堆積物、腐植を含む谷底堆積物、黒色土壌が観察された。崩壊堆積物は水を多 く含み、一部で湧水していたため壁面の保持が困難であった。とくに南西壁面において壁面 の崩落が著しく、全面的な観察は北東壁面で実施した。

図10 恵那山断層上手向地区周辺の地形とトレンチ掘削地点および断層露頭の位置

図11 上手向地区で観察された恵那山断層の露頭のスケッチ

図 12 「地理院地図」で見出された水田の区割にみられるリニアメント 元の航空写真は国土地理院が 1976 年に撮影した CCB-76-16 (C12-17)

図13 掘削直後に撮影した上手向トレンチの全景

壁面の記録は、写真画像合成による三次元モデル作成によって行なった。三次元モデルから作成したトレンチ北東壁面の画像と観察結果に基づくスケッチを図14に示す。トレンチで観察された基盤は全て瀬戸層群と思われる泥岩であり、恵那山断層の上盤側(南東側)に分布すると思われる花崗岩もしくは中新統の堆積岩は観察できなかった。基盤の堆積岩の上面はほぼ水平であり、その上に崩壊堆積物もしくは谷底堆積物が載る。トレンチの北西寄りでは、谷底堆積物は基盤の堆積岩を侵食した上に堆積している。基盤の堆積岩と崩壊堆積物の境界面で観察された条線は、恵那山断層の走向に対してほぼ直交する方向に移動したことを示していることから、地すべり地形の末端における構造と解釈される。谷底堆積物は堆積構造から新旧に区分することができ、そのうちの旧期の谷底堆積物には水平方向に押されて変形した構造が認められるが、新期の谷底堆積物にはそのような変形構造は見られない。したがって、旧期の谷底堆積物の堆積後、新期の谷底堆積物の堆積前に地すべりイベントが発生したことが推定される。

図 14 三次元モデルから作成した上手向トレンチ北東壁面の画像(上)と 現地での観察に基づくスケッチ(下)

3) 火山灰分析

令和3年度に恵那山断層阿木地区(中津川市)で実施したボーリング調査のコア試料について火山灰分析を実施し、掘削地点の高位段丘の形成年代を推定した。さらに、その年代と 同地点における高位段丘の上下変位量および恵那山断層における条線観察の結果から推定される断層のすべり方向に基づき、恵那山断層の横ずれ平均変位速度を検討した。

a)火山灰分析結果

ボーリングコアの深度 5 mから地表までについて、砂礫等の粗粒部及び地表付近では 10 ~20 cm 間隔で、ローム層については 5 cm 間隔で試料を採取し、全ての試料について火山 灰の検出を行なった後、火山ガラスの屈折率測定、化学組成分析を実施した。その結果、深 度 0.60-0.80 mから姶良-丹沢火山灰(AT;約2.9~3万年前:町田・新井,2003)の火山 ガラスが、深度 1.2-1.5 mから鬼界-葛原火山灰(K-Tz;約9.5万年前)の高温石英が、そ れぞれ検出された(図 15)。ローム層の中位に K-Tz が含まれていることから、ローム層の 堆積速度がほぼ一定だったと仮定すれば、この高位段丘の形成年代は約20万年前と推定さ れる。

b) 平均変位速度の検討

「地理院地図」の断面図ツールを利用して地形断面図を作成し、高位段丘の上下変位量を確認したところ、約4mであった(図16)。火山灰分析の結果に基づき、高位段丘の形成年代 を約20万年前と仮定すると上下成分の平均変位速度は約0.02m/千年と算出される。一方、 恵那山断層については令和3年度に原地区(恵那市山岡町)で実施した断層条線の調査結果 から断層運動方向のレイク角(断層面上における走向方向に対するすべり方向の角度)が約20°-60°であることが確認されている。恵那山断層における断層運動方向が一様だと仮定してこのレイク角の値を適用すると、阿木地区における横ずれ平均変位速度は0.15-0.1 m/千年と求められる。

図 15 阿木地区で実施したボーリング調査の掘削地点と火山灰分析結果

図 16 阿木地区における高位段丘の地形断面と上下変位量 「地理院地図」の断面図ツールを利用して地形断面図を作成し、 上下変位量や推定される断層を加筆した。

4)¹⁴C年代測定

恵那山-猿投山北断層の活動時期・平均活動間隔・地震後経過時間などを検討するため、 東白坂トレンチと上手向トレンチの壁面から採取した試料について¹⁴C(放射性炭素同位 体)年代測定を実施した。分析作業は株式会社地球科学研究所に発注し、年代測定はベータ 社で実施された。以下では、得られた年代値(yBP)を、較正プログラムを用いて暦年較正 した値(cal.yBP)で示す。

a) 東白坂トレンチ

東白坂トレンチでは、壁面から採取した試料のうち10試料について放射性炭素同位体年代

測定を実施した(図17、表1)。以下では、暦年較正した年代値(2σ)を用いて、猿投山 北断層の活動時期を議論する。断層によって切られている地層から採取した試料は、HSS-19、 HSS-21、HSS-25、HSS-Lである。南西壁面から採取した中で最も新しい年代値を示した試料 はHSS-25であり、その年代値は8,514-8,368 cal.yBPであった。一方、断層を覆う地層か ら採取した試料は、HSS-23、HSS-24、HSS-Mである。これらのうち、南西壁面から採取した 中で最も古い年代値を示した試料はHSS-24であり、その年代値は774-684 cal.yBPであっ た。これらの年代測定結果に基づくと、今回のトレンチ調査で明らかにされた猿投山北断層 の最新活動時期は、8,514 cal.yBP以後、684 cal.yBP以前である(図18)。なお、埋め戻 し前に北東壁面から採取した試料(HSS-L, HSS-M)の年代測定結果に基づいて推定される断 層活動時期は、14,787 cal.yBP以後、682 cal.yBP以前であり、南西壁面の結果とは矛盾し ない。

表1 東白坂トレンチで採取された試料の放射性炭素同位体年代 年代測定は株式会社地球科学研究所に依頼した。暦年較正年代は、較正曲線に IntCal20 (Reimer et al., 2020)を用いて、較正プログラム BetaCal 4.20 (Beta 社)で計算し た値。

試料番号	ラボ番号	採取位置	試料種類	Conventional age (yBP)	暦年代 (2 <i>σ</i> ∶cal.yBP)	暦年代 (1 <i>σ</i> :cal.yBP)
HSS-04	Beta-657497	S 13.30 / 4.10	charcoal	7,900 \pm 30	8,977 - 8,596	8,768 - 8,604
HSS-06	Beta-657498	S 13.30 / 4.00	organic sediment	$4,360 \pm 30$	5,033 - 4,852	4,960 - 4,865
HSS-10	Beta-657499	S 13.30 / 3.60	organic sediment	$8,700 \pm 30$	9,748 - 9,546	9,679 - 9,556
HSS-19	Beta-657500	S 7.10 / 2.00	wood	$17,180 \pm 50$	20,881 - 20,561	20,838 - 20,645
HSS-21	Beta-657501	S 7.10 / 2.00	organic sediment	8,470 \pm 30	9,535 - 9,446	9,527 - 9,477
HSS-23	Beta-657502	S 6.05 / 2.80	organic sediment	600 ± 30	650 - 542	636 - 552
HSS-24	Beta-657503	S 5.50 / 2.70	plant	840 ± 30	774 - 684	774 - 690
HSS-25	Beta-657504	S 5.55 / 2.50	organic sediment	7,620 \pm 30	8,514 - 8,368	8,420 - 8,365
HSS-L	Beta-657505	北東壁面(増し掘り)	organic sediment	12,290 \pm 30	14,787 - 14,089	14,275 - 14,125
HSS-M	Beta-657506	北東壁面(増し掘り)	plant	830 ± 30	784 - 682	770 - 687

図 17 東白坂トレンチ南西壁面で得られた¹⁴C 年代測定結果

図18 東白坂トレンチ南西壁面の断層付近の拡大画像と断層活動時期の解釈

b)上手向トレンチ

トレンチ壁面から採取した試料のうち、北東壁面から採取した18 試料(図19)と南西壁 面から採取した7 試料(図20)の合計25 試料について放射性炭素同位体年代を測定した (表2)。

表土(B層)から採取された試料(KTG-19、KTG-20、KTG-22、KTG-23、KTG-24)は、約2,000年前から約4,400年前の年代値を示す。新期の谷底堆積物(C層・D層)から採取された試料(KTG-01、KTG-04、KTG-35、KTG-36)は、約1,000年前から約3,000年前の年代値を示す。旧期の谷底堆積物(E層・F層)から採取された試料(KTG-05、KTG-06、KTG-07、KTG-08、KTG-11)は、約1,400年前から約5,700年前の年代値を示す。崩壊堆積物の上部に 挟在する腐植質砂(KTG-21および KTG-25)は、約2,000年前から約2,800年前の年代値を示す。

北東壁面の新期の谷底堆積物から得られた最も古い年代値(1,525-1,375 cal.yBP: KTG-04)と旧期の谷底堆積物から得られた最も新しい年代値(3,071-2,876 cal.yBP: KTG-07)に基づくと、この地点で旧期の谷底堆積物が変形したイベントが発生した時期は3,071 cal.yBP以降、1,375 cal.yBP以前と推定される。また、崩壊堆積物に取り込まれるように分布している腐植質砂(KTG-21 および KTG-25)の年代値(KTG-21:2,776-2,721 cal.yBP、KTG-25:2,285-1,954 cal.yBP)は、このイベントが発生した際に既に堆積していた表土の年代を表している可能性がある。

表2 上手向トレンチで採取された試料の放射性炭素同位体年代 年代測定は株式会社地球科学研究所に依頼した。暦年較正年代は、較正曲線に IntCa120 (Reimer et al., 2020)を用いて、較正プログラム BetaCal 4.20 で計算した値。

試料番号	ラボ番号	採取位置	試料種類	Conventional age (yBP)	暦年代 (2 <i>σ</i> ∶Cal.yBP)	暦年代 (1 <i>σ</i> :Cal.yBP)
KTG-01	Beta-656032	E 14.30 / 0.70	organic sediment	1,190 \pm 30	1,242 - 998	1,176 - 1,064
KTG-04	Beta-656033	E 13.45 / 0.30	organic sediment	1,560 \pm 30	1,525 - 1,375	1,514 - 1,388
KTG-05	Beta-656034	E 10.70 / 0.70	organic sediment	$\textbf{3,280} \pm \textbf{30}$	3,569 - 3,411	3,556 - 3,455
KTG-06	Beta-656035	E 10.50 / 0.85	organic sediment	$3,710 \pm 50$	4,150 - 3,932	4,140 - 3,986
KTG-07	Beta-656036	E 10.05 / 1.00	organic sediment	$2,860\pm30$	3,071 - 2,876	3,057 - 2,888
KTG-08	Beta-656037	E 9.75 / 0.75	organic sediment	$3,\!490\pm30$	3,841 - 3,647	3,829 - 3,700
KTG-10	Beta-656038	E 9.35 / 1.05	wood	>43,500	-	-
KTG-11	Beta-656039	E 9.20 / 1.05	organic sediment	4,950 \pm 30	5,733 - 5,598	5,714 -5, 603
KTG-14	Beta-656040	E 8.70 / 0.80	organic sediment	>43,500	-	-
KTG-17	Beta-656041	E 6.90 / 1.20	organic sediment	$36,560 \pm 360$	42,032 - 40,991	41,813 - 41,257
KTG-18	Beta-656042	E 6.55 / 1.40	organic sediment	$\textbf{37,980} \pm \textbf{420}$	42,603 - 41,883	42,421 - 42,097
KTG-19	Beta-656043	E 1.80 / 3.30	organic sediment	$\textbf{3,730} \pm \textbf{30}$	4,221 - 3,981	4,148 - 3,991
KTG-20	Beta-656044	E 3.50 / 2.90	soil	$3,040\pm30$	3,350 - 3,165	3,332 - 3,180
KTG-21	Beta-656045	E 3.50 / 2.50	soil	$2,\!620\pm30$	2,776 - 2,721	2,759 - 2,736
KTG-22	Beta-656046	E 3.80 / 3.10	soil	$2,120\pm30$	2,292 - 1,998	2,124 - 2,005
KTG-23	Beta-656047	E 3.80 / 2.90	soil	$2,980\pm30$	3,324 - 3,007	3,210 - 3,180
KTG-24	Beta-656048	E 3.80 / 2.70	soil	$3,\!860\pm30$	4,409 - 4,155	4,401 - 4,185
KTG-25	Beta-656049	E 3.80 / 2.50	organic sediment	$2,100\pm30$	2,285 - 1,954	2,106 - 2,003
KTG-28	Beta-656050	W 9.90 / 0.60	organic sediment	$33,690 \pm 250$	39,330 - 37,649	39,216 - 38,252
KTG-29	Beta-656051	W 10.25 / 0.50	organic sediment	$30,\!810\pm190$	35,555 - 34,664	35,366 - 34,875
KTG-32	Beta-656052	W 12.00 / 0.70	plant	Modern	-	-
KTG-33	Beta-656053	W 12.05 / 0.75	organic sediment	$38,920\pm470$	43,034 - 42,231	42,759 - 42,409
KTG-34	Beta-656054	W 12.25 / 0.75	plant	Modern	-	-
KTG-35	Beta-656055	W 12.40 / 0.77	organic sediment	$2,880\pm30$	3,146 - 2,881	3,061 - 2,961
KTG-36	Beta-656056	W 12.40 / 0.50	organic sediment	1,660 \pm 30	1,690 - 1,416	1,684 - 1,520

図19 上手向トレンチ北東壁面で採取した試料の試料採取位置と年代測定結果 年代値は暦年較正した2gの値

図 20 上手向トレンチ南西壁面で採取した試料の試料採取位置と年代測定結果 年代値は暦年較正した 2 σ の値

5) 断層活動履歴の検討

a) 断層活動時期

恵那山-猿投山北断層帯における従来の調査結果および今回のトレンチ調査の結果に基づいて断層活動の時空間ダイアグラム(図21)を作成し、同断層帯の活動履歴を検討した。 恵那山断層については、活動1(最新活動)以前の活動時期については十分な情報が得られなかったため、地震調査研究推進本部地震調査委員会(2004)の長期評価が示した断層活動時期を用いて活動間隔及び活動区間に関する議論を進める。

地震調査研究推進本部地震調査委員会(2004)による長期評価では、活動1について「約7,600年前以後、約5,400年前以前」に恵那山-猿投山北断層帯の全体が活動したとされている。本プロジェクトで実施した調査結果を踏まえても断層帯全体が活動した可能性が残されており、その時期は「約7,600年前以後、約7,200年前以前」に限定される(図22)。活動2(最新活動よりも一つ前の断層活動)及び活動3について、恵那山断層には地震調査研究推進本部地震調査委員会(2004)の情報を、猿投山北断層には本プロジェクトの成果による活動時期を用いると、活動2の発生時期は「約21,000年前以後、約11,200年前以前」、活動3の発生時期は「約22,200年前以後、約22,000年前以前」となる。活動1と活動2の活動間隔は「3,600-13,800年」、活動2と活動3の活動間隔は「1,000-11,000年」となる。これら過去3回の活動時期に基づき、活動1と活動3の活動間隔を等分して求めた恵那山-猿投山北断層帯の平均活動間隔は「約6,000-8,700年」と推定される(図22の平均活動間隔①)。別の方法として現在までの経過時間を含めた場合の平均活動間隔を算出すると、約22,200年前以降に3回の活動時期が推定されることから、平均活動間隔は「約7,400年」と求めることができる(図22の平均活動間隔②)。

次に、同じ時空間ダイアグラムを用いて、恵那山-猿投山断層帯が「恵那山断層」と「猿 投山北断層」の2つの活動区間に分けられると仮定した場合の活動間隔を検討した(図23)。 この場合には、「恵那山断層」の活動時期は「約7,600年前以後、約7,200年前以前」とな る。活動間隔については、活動2の発生時期について従来の長期評価結果(約21,000年前 以後、約11,000年前以前)を用いると、活動1と活動2の活動間隔は「約3,400-13,800 年」となる。一方、「猿投山北断層」を単独で評価すると、活動1(最新活動時期)は「約 8,500年前以後、約5,900年前以前」、活動2は「約22,300年前以後、約11,200年前以前」、 活動3は「約22,200年前以後、約22,000年前以前」となる。活動間隔については、活動1 と活動2の間は「約2,700-16,400年」と算出される。活動2と活動3の活動間隔について は、活動3の活動時期が活動2の活動時期の範囲に含まれてしまうため「約11,000年より も短い」としか言うことができない。また、活動1と活動3の活動間隔を等分して求めた平 均活動間隔は、恵那山断層(活動2と活動3については地震調査研究推進本部地震調査委員 会(2004)の長期評価に基づく)については「約7,200-13,400年(平均:約10,300年)」、 猿投山北断層については「約6,750-8,150年(平均:約7,450年)」と算出される(図24)。

図 21 恵那山-猿投山北断層帯における断層活動時期の時空間ダイアグラム

図 22 恵那山-猿投山北断層帯を一区間とした場合の活動間隔

図 23 恵那山-猿投山北断層帯を2つの活動区間とした場合の活動間隔

図 24 過去の3回の断層活動時期に基づく恵那山断層と猿投山北断層の平均活動間隔

b)断層運動方向

今年度に実施した東白坂トレンチにおいて断層条線を観察し、猿投山北断層の運動方向 を検討した。断層面の走向と傾斜について、写真測量に基づいて作成した三次元モデルを用 いて計測したところ、N54°E・62°SEであった(図 25)。トレンチの底面で断層の複合面構造 (異なる方向に発達した複数の面構造)を観察した(図 26)。その結果、複合面構造から推 定される断層運動方向は、レイク角 10°~30°と算出された(図 27)。

また、令和3年度に断層運動方向の調査で実施した丸原鉱山(恵那市山岡町原地区)に おいて断層条線観察の再調査を実施したところ、ピット4の断層面において屈曲した条線を 確認した(図28)。これについて、海外(ニュージーランド)における事例研究に基づき、 破壊伝播方向(観察地点と破壊開始点の位置関係)について検討した。Kearse et al. (2019)及びKearse and Kaneko (2020)は、ニュージーランドで2016年に発生したカイ コウラ地震における調査結果と数値解析に基づき、断層のすべり方向の屈曲が破壊伝播方向 と関係していることを論じた。そのモデルに従うと、条線観察を行なった原地区における最 新の断層活動における破壊伝播方向は、北東から南西方向に向かったことが推定される(図 29)。

図 25 東白坂トレンチの三次元モデルを用いて計測した猿投山北断層の走向と傾斜

図 26 東白坂トレンチの底面で観察された猿投山北断層の複合面構造

図 27 東白坂トレンチで観察された複合面構造から推定した猿投山北断層の運動方向

図 28 原地区丸原鉱山ピット4 で観察された断層条線の屈曲

図 29 屈曲した条線から推定される破壊伝播方向 基図には、地震調査研究推進本部地震調査委員会(2004)を使用した。

6)構成断層及び地震規模の検討

恵那山-猿投山北断層帯を構成する活断層および同断層帯を震源として発生する地震の規 模について、a)断層活動時期、b)断層運動方向、c)断層面の傾斜角の観点から検討を行 なった。

a)断層活動時期に基づく検討

本プロジェクトでは、恵那山断層と猿投山北断層の断層活動時期を精度良く求めること により、両断層の活動時期が分離される可能性があるのではないかという仮説の下に調査を 進めた。しかし、本プロジェクトで実施したトレンチ調査の結果を踏まえても恵那山-猿投 山北断層帯全体が活動した可能性が残され、その時期は「約7,600年前以後、約7,200年前 以前」に限定される。

b)断層運動方向に基づく検討

地震調査研究推進本部地震調査委員会(2009)の別冊2に示された恵那山-猿投山北断層 帯の震源断層モデルでは、屏風山・恵那山断層帯及び猿投山断層帯の長期評価(地震調査研 究推進本部地震調査委員会,2004)に基づき、猿投山北断層(西半部:横ずれ断層)と恵那 山断層(東半部:逆断層)のすべり角(レイク角)について、それぞれ、180°および90°と 設定されている。

今年度に実施した東白坂トレンチでは、断層破砕帯の複合面構造の解析から猿投山北断層の断層運動方向が10°~30°であることが確認された。また、昨年度に実施したピット調査(原地区)における断層条線観察の再調査結果から、恵那山断層の断層運動方向は20°前後であることが確認された。したがって、両断層の断層運動方向は同じセンスであり、両者が同時に活動する可能性が十分に考えられる。

c) 断層面の傾斜角に基づく検討

サブテーマ2で実施した地質調査の結果に基づき、猿投山北断層、恵那山断層および屏 風山断層の断層面の傾斜角に関するデータを整理し、それらの平均値を求めた。猿投山北断 層については、既往のトレンチ調査(鈴木・野澤,2006)および本プロジェクトのトレンチ 調査において得られたデータに基づき、断層面の傾斜角について約70°南東傾斜という値を 得た(図30上段)。恵那山断層については、既存文献における記載および令和3年度に原地 区で実施した断層条線観察時の記録の平均値として、約60°南東傾斜という値を得た(図30 中段)。屏風山断層については、既往文献に記載されている断層面の傾斜角の記載に基づき、 その平均が約55°になることを確認した(図30下段)。

地震調査研究推進本部地震調査委員会(2004)では、恵那山断層を「逆断層」、猿投山北 断層を「高角な横ずれ断層」と評価している。また、地震調査研究推進本部地震調査委員会 (2009)の震源断層モデルでは、恵那山断層の断層面の傾斜角を40°、猿投山北断層の断層 面の傾斜角を90°と設定している。両断層は地表トレースの平面形状は近接しているが、傾 斜角が大きく異なるため、同時に活動する可能性が低いことが本プロジェクトを実施する前 には想定された。しかし、断層露頭の情報のデータを整理した結果、断層面の傾斜角は近似 していることが確認されたため、両断層が同時に活動する可能性は十分に考えられる。

図 30 既往データと本プロジェクトで得られたデータに基づく猿投山北断層(上段)、 恵那山断層(中段)および屏風山断層(下段)の断層面の傾斜角 青線及び緑線は本プロジェクトの調査で計測された値。黒線は既往文献に記さ れた値。

(d) 結論ならびに今後の課題

屏風山・恵那山断層帯及び猿投山断層帯(恵那山-猿投山北断層帯)の地震発生予測の信 頼性を向上するため、恵那山-猿投山北断層帯上の複数地点(東白坂地区、上手向地区)で トレンチ調査を実施し、それぞれの調査結果と既往研究の成果を統合して活動区間の検討を 行なった。今回の結果からは地震調査研究推進本部地震調査委員会(2004)の長期評価で提 示された両断層が一括される可能性は否定できない。ただし、猿投山北断層については、鈴 木・野澤(2006)が指摘している最新活動が存在する可能性が残されており、同断層が単独 で活動した可能性が残されている。この最新活動を考慮しなかった場合、恵那山-猿投山北 断層帯が一括して活動するモデルにおいては、最新活動時期が約7,600-7,200年前、平均活 動間隔については過去3回の活動時期に基づく場合には「約7,200-7,500年」、現在までの 経過時間を考慮した場合には「約7,400年」と算出される。一方、両断層がそれぞれ違った 固有の活動をするモデルにおいては、恵那山断層では最新活動時期が約7,600-7,200年前、平均活動間隔が約7,200-13,400年(平均:約10,300年)、猿投山北断層では最新活動時期 が約8,500-5,900年前、平均活動間隔が約6,750-8,150年(平均:約7,450年)となる。

その他、令和3年度に実施した断層運動方向に関する調査及びボーリング調査の追加検討 を行なった。断層運動方向の調査では屈曲した断層条線が観察されたことから、断層活動時 の破壊伝播方向の検討を行ない、恵那山断層原地区においては北東から南西方向に向かって 破壊が伝播するとの結論を得た。ボーリング調査については、コア試料の火山灰分析を実施 して地形面の形成年代を推定し、同地点における上下変位量および恵那山断層の断層運動方 向に基づいて横ずれ平均変位速度を 0.1-0.15 m/千年と推定した。この値は、地震調査研究 推進本部地震調査委員会(2004)が示した平均変位速度の値(0.2-0.4 m/千年)を若干下回 る結果となった。また、既往文献における記載及びサブテーマ2における地質調査の結果に 基づき、猿投山北断層、恵那山断層、屏風山断層の断層面の傾斜角を、それぞれ約70°、約 60°、約55°(いずれも南東傾斜)と算出した。

(e) 引用文献

有井琢磨,岐阜県岩村町付近の断層地形.新地理,7,110-120,1958.

岐阜県,「平成13年度 地震関係基礎調査交付金 屏風山・恵那山断層帯に関する調査成果報 告書」、118p, 2002.

地震調査研究推進本部地震調査委員会, 屏風山・恵那山断層帯及び猿投山断層帯の評価, 50p, 2004.

地震調查研究推進本部地震調查委員会,全国地震動予測地図,別冊2,352p,2009.

香取拓馬・小林健太,斜交する断層帯会合域の断層幾何及び運動像の変遷-屏風山断層の例-(R14-P-7)(ポスターセッション)(演旨).日本地質学会第 123 年学術大会講演要旨, p.264, 2016.

香取拓馬・小林健太・安江健一・丹羽正和・小松哲也・細矢卓志・笹尾英嗣,岐阜県南東部 に位置する屏風山断層の破砕・変質履歴(SSS29-P06)(ポスターセッション)(演旨).日 本地球惑星科学連合大会予稿集(DVD), SSS29-P06, 2015.

Kearse, J., Kaneko, Y., Little, T., Van Dissen, R., Curved slickenlines preserve direction of rupture propagation. Geology, https://doi.org/10.1130/G46563.1, 2019.

Kearse, J., Kaneko, Y., On - fault geological fingerprint of earthquake rupture direction. J. Geophys. Res., 125, e2020JB019863. 2020.

町田洋・新井房夫編,新編火山灰アトラス-日本列島とその周辺-.東京大学出版会,336p,2003.

森山昭雄,木曽川・矢作川流域の地形と地殻変動.地理学評論(Ser.A),60,67-92,1987. 中山勝博,岐阜県土岐市における瀬戸層群の堆積盆地.地団研専報:瀬戸内区の特性,no. 29,119-129,1985.

Reimer, P.J. Austin, W.E.N, Bard, E., Bayliss, A., Blackwell, P.G., Bronk Ramsey,

C., Butzin, M., Cheng, H., Edwards, R.L., Friedrich, M., Grootes, P.M., Guilderson, T.P., Hajdas, I., Heaton, T.J., Hogg, A.G., Hughen, K.A., Kromer, B., Manning, S.W., Muscheler, R., Palmer, J.G., Pearson, C., van der Plicht, J., Reimer, R.W., Richards, D.A., Scott, E.M., Southon, J.R., Turney, C.S.M., Wacker, L., Adolphi, F., Büntgen, u., Capano, M., Fahrni, S.M., Fogtmann-Schulz, A., Friedrich, R., Köhler, P., Kudsk, S., Miyake, F., Olsen, J., Reinig, F., Sakamoto, M., Sookdeo, A. and Talamo, S., The IntCal20 Northern Hemisphere radiocarbon age calibration curve (0-55 cal kBP), Radiocarbon 62(4), 725-757, 2020.

鈴木康弘・野澤竜二郎,猿投山北断層のトレンチ調査-横ずれ断層の活動認定と議論-.月 刊地球,号外,No.54,171-179,2006.

鈴木康弘・岡田篤正・熊原康博・東郷正美, 1:25,000 都市圏活断層図「瀬戸」. 国土地理院 技術資料 D1-No. 435, 2004.

山崎徹・野田篤・尾崎正紀,明智地域の地質,地域地質研究報告(5万分の1地質図幅).産 総研地質調査総合センター,120p,2020.

(3) 令和2~4年度の成果

(a) 業務の要約

恵那山ー猿投山北断層帯における大地震の発生予測向上に資するため、同断層帯の3地区(富 田、上手向、東白坂)でトレンチ調査等を実施し、既往研究の成果と併せて断層活動履歴に関す る検討を行なった。この結果に基づいて同断層帯の断層活動に関する時空間ダイアグラムを作成 し、過去の断層活動時期および周辺地質の状況から活動範囲を検討した。また、同断層帯におけ る断層運動方向の履歴を明らかにするために断層条線及び断層破砕帯の構造に関する調査を実施 した。その他、横ずれ平均変位速度、断層面の傾斜角に関する検討を行なった。各調査を実施し た調査地の位置を図 31 に示す。

図 31 サブテーマ2で実施した活断層調査の位置図 背景地図は、国土地理院が公開している「地理院地図」で作成した標高段彩陰影図に、 活断層トレースや自治体の境界線を加筆して作成した。

- (b) 業務の実施方法
- 1) ボーリング調査

令和2年度に富田地区(恵那市)において、トレンチ調査の事前調査としてボーリング調査(10 m×4孔)を実施した。また、令和3年度に阿木地区(中津川市)において、地形面の形成年代を検討するための火山灰試料採取を目的としてボーリング調査(5 m×1孔)を実施した。

2) トレンチ調査

恵那山-猿投山北断層帯の断層活動履歴を明らかにするため、同断層帯上の3地区でトレ ンチ調査を実施した。調査地点の選定にあたっては、緻密な地形地質調査を実施したほか、 ボーリング調査を実施して詳細な断層通過位置や地層の状況などの検討を事前に行なった。 トレンチ調査を実施した地区は、富田地区(岐阜県恵那市)、上手向地区(岐阜県恵那市)、 東白坂地区(愛知県瀬戸市)である。東白坂地区では、令和2年度と令和4年度の2回にわ たって計2孔のトレンチを掘削した。トレンチ壁面を観察して断層活動による地層の変形の 有無を確認するとともに、写真撮影とスケッチを行って観察結果の記録を残した。東白坂地 区で実施した2回目のトレンチ及び上手向地区のトレンチでは、壁面記録として写真測量に より三次元モデルを作成した。

3) 火山灰分析

恵那山断層帯の阿木地区で掘削したボーリングコア、富田地区で掘削したトレンチの壁面、 猿投山北断層帯の東白坂地区で掘削したトレンチの壁面のそれぞれから採取した試料につい て火山灰分析を実施した。阿木地区では、火山灰分析結果に基づいて高位段丘の形成年代を 推定し、同地点における上下変位量と恵那山断層の断層運動方向に基づき、恵那山断層の横 ずれ平均変位速度を算出した。富田地区と東白坂地区では、トレンチ壁面で観察した地層の 年代について、¹⁴C年代測定結果と比較検討を行ない、断層活動時期の推定について信頼性を 向上させた。

4)¹⁴C年代測定

主にトレンチ壁面で観察した地層の年代を明らかにするため、壁面から採取した試料の¹⁴C (放射性炭素同位体)年代測定を実施した。得られた年代測定結果に基づき、各地点におけ る断層活動履歴を検討した。

5) 断層運動履歴の検討

恵那山-猿投山北断層帯の断層運動履歴について、断層活動時期と断層運動方向の観点から 検討を行なった。断層活動時期については、本調査及び従前に実施されたトレンチ調査の結 果に基づき、恵那山-猿投山北断層帯全体が同時に活動した可能性とその時期について検討し た。また、恵那山断層帯と猿投山北断層帯がそれぞれ個別に活動したと仮定した場合の断層 活動時期及び平均活動間隔を推定した。断層運動方向については、令和3年度に恵那山断層 帯の原地区で実施したピット調査の結果と、令和4年度に猿投山北断層帯の東白坂地区で実 施したトレンチ調査における観察結果に基づき、それぞれの断層帯における断層運動方向を 明らかにした。 6)構成断層及び地震規模の検討

断層運動履歴の検討結果及び断層帯の南西延長における地質調査の結果に基づき、恵那山 - 猿投山北断層帯を構成する活断層の構成とその断層帯を震源として発生する地震規模につい て検討を行なった。

(c) 業務の成果

1) ボーリング調査

令和2年度に富田地区(恵那市)で、令和3年度に阿木地区(中津川市)でボーリング調 査を実施した。

a) 富田地区ボーリング調査(令和2年度)

恵那山断層富田地点(図 32)において、トレンチの詳細な掘削位置及び掘削深度を決める ための群列ボーリング調査を実施した。掘削地点は岐阜県(2002)が ET-1 トレンチを掘削し た地点の北東約 100 m の地点である。

掘削はオールコアボーリングとし、堆積物の基盤深度と岩相を確認しながら、掘削深度10 m前後のボーリングを合計4孔掘削した。孔名は、掘削した順にT-1からT-4とした。群列ボ ーリングの測線は、恵那山断層の走向方向(N30°E前後)と直交するように北西-南東方向に 配置した。北西から南東に向かってT-4、T-1、T-2、T-3の順である(図33)。この地点 の約100 m南西では、恵那山断層の低下側(北西側)に瑞浪層群が、隆起側(南東側)に花 崗岩が分布することが確認されている(岐阜県,2002)。今回のボーリング調査では、堆積 物の基盤として瑞浪層群と花崗岩の境界が確認されることが期待されたが、T-1からT-4まで のいずれにおいても地表からの掘削深度10 m付近で瑞浪層群の泥岩が確認された(図34)。 瑞浪層群を覆う堆積物の層相は、花崗岩や濃飛流紋岩の礫を主体とし、一部に砂層を挟在す る。

図 32 恵那山断層富田地点の位置図 基図には「地理院地図」を用いた。活断層線は「1:25,000都市圏活断層図」の 「中津川」(岡田・他,2017)及び「恵那」(宮内・他,2017)に従った。

図 33 富田地区で掘削したボーリング孔の位置図

T-1からT-4の丸印はボーリング孔の位置を、緑色の実線は図34に示す地形地質断面図の位置を示す。

図 34 富田地点における群列ボーリング調査結果に基づく地形地質断面図

b) 阿木地区ボーリング調査(令和3年度)

恵那山ー猿投山北断層帯の平均変位速度を検討するため、中津川市阿木地区(図 35)に分 布する高位段丘上において、深さ5 m のオールコアボーリングを1孔掘削した。掘削工法は、 地層の変化に応じてコア採取に最も有効な方法を選択した。コアの採取には、径 86 mm のパ ックチューブを用いた。掘削地点は、南東から北西に向かって延びる尾根状の高位段丘面上 に位置する。

ボーリング調査により採取された地層は、上位から順に黒色シルト質土壌、撹乱層、褐色 小礫混じりシルト(風成ローム)、灰白色砂礫、褐色中砂〜粗砂、礫混じりシルト、黄灰色砂 礫、黄灰色玉石混じり礫に区分される(図 36、図 37)。

黒色シルト質土壌は、地表から深度 0.48 mまでに分布する現在の表土である。

深度 0.48 m から 0.80 m にかけては、撹乱層と判断した。

深度 0.80 m から 2.28 m には褐色小礫混じりシルト(風成ローム)が分布する。礫径は 5 mm 以下で、下方に向かうにつれて礫径が大きくなり、礫の混入率が高くなる。

深度 2.28 mから 3.56 mには灰白色砂礫が分布する。礫種は花崗岩で、礫径は1 cm以下が 主体である。マトリクスはシルトで、非常に多く、マトリクス支持である。

深度 3.56 m から 3.90 m には、褐色中砂~粗砂が分布する。

深度 3.90 mから 4.02 mには、礫混じりシルトが分布する。

深度 4.02 m から 4.60 m には、黄灰色砂礫が分布する。マトリクスは細砂で非常に多く、 基質支持である。

深度 4.60 m以下には、黄灰色玉石混じり礫が分布する。コア径を超える大きさ(最大径は約 20 cm)の玉石を多く含まれており、礫種は濃飛流紋岩と花崗岩である。高位段丘構成層の 主要な堆積物であると考えられる。

図35 阿木地区ボーリング掘削地点 基図には「1:25,000都市圏活断層図」の「中津川」(岡田・他, 2017)及び「恵那」(宮内・他,2017)を用いた

図 36 中津川市阿木地区で掘削したボーリングコアの写真(上)と層相区分(下)

図 37 阿木地区で実施したボーリング調査の掘削地点と柱状図

2) トレンチ調査

恵那山-猿投山北断層帯の活動履歴を明らかにするため、同断層帯上の3地区(富田、上手 向、東白坂)においてトレンチ調査を実施した。

a) 富田地区トレンチ(岐阜県恵那市岩村町)

恵那山断層の富田地点(図32)で、長さ約30 mのトレンチを掘削した。掘削地点は、2001 年に岐阜県がET-1トレンチを掘削した地点から約100 m北東の位置に位置する。トレンチ掘削 に先立って実施した群列ボーリング調査(図33、図34)では、恵那山断層の隆起側(南東 側)に分布する花崗岩を確認することができなかったため、調査用地の範囲の南東寄りにト レンチを掘削することとした(図38)。北西側については、群列ボーリングのT-1孔とT-4孔 の間に存在する崖地形が断層崖か確認できる範囲まで掘削した。これら全ての範囲を掘削す ると比高が大きくなるため、先に南東側を掘削して上段とし、その後に北西側を掘削して下 段とした(図39)。上段と下段でトレンチの開口部の幅が異なるため、北東壁面を一面で観 察できるようにし、南東壁面は鍵状の形状とした。

トレンチ壁面では、円~亜円の大礫を多く含む砂礫層と粘土質の細粒堆積物が主に分布し、 一部に細砂層を挟在する。断層は、トレンチの南東寄りに2条確認された(北東壁面:図40、 南西壁面:図41)。どちらの断層面も比較的高角に南東に傾斜する。北東壁面では、断層は 腐植土に覆われている様子が観察された。

図38 富田地区トレンチ(令和2年度)の掘削位置図 T-1~T-4は群列ボーリング調査の掘削位置を示す

図 39 富田トレンチの全体写真

図40 富田トレンチ北東壁面(上段)の写真 赤線は断層、赤矢印はずれの方向を示す。 水平及び垂直のグリッドに間隔は1 m。

図41 富田トレンチ南西壁面(上段)の写真 赤線は断層、赤矢印はずれの方向を示す。 水平及び垂直のグリッドに間隔は1 m。 b) 上手向地区トレンチ(岐阜県恵那市山岡町)

恵那山断層の上手向地地区(図 42)で、長さ約 16 mのトレンチを掘削した。トレンチ壁面 では、堆積岩からなる基盤、花崗岩の大礫を多く含む崩壊堆積物、腐植を含む谷底堆積物、 黒色土壌が観察された(図 43、図 44)。基盤の堆積岩の上面はほぼ水平であり、その上に崩 壊堆積物もしくは谷底堆積物が載る。トレンチの北西寄りでは、谷底堆積物は基盤の堆積岩 を侵食した上に堆積している。基盤の堆積岩と崩壊堆積物の境界面で観察された条線は、恵 那山断層の走向に対してほぼ直交する方向に移動したことを示していることから、地すべり 地形の末端における構造と解釈される。谷底堆積物は堆積構造から新旧に区分することがで き、そのうちの旧期の谷底堆積物には水平方向に押されて変形した構造が認められるが、新 期の谷底堆積物の堆積前に地すべりイベントが発生したことが推定される。

図 42 上手向地区トレンチの位置図

図 43 上手向トレンチ北東壁面の画像(上)と現地での観察に基づくスケッチ(下)

図 44 上手向トレンチ南西壁面の画像と現地での観察に基づくスケッチ
c) 東白坂地区トレンチ (愛知県瀬戸市)

猿投山北断層の東白坂地区の東京大学生態水文学研究所赤津演習林内において、2020年度 と2022年度にそれぞれトレンチ調査を実施した。この地点においては1996年に愛知県がト レンチを掘削している(愛知県建築部・玉野総合コンサルタント(株),1997;鈴木・野澤, 2006)。令和2年度のトレンチ調査では、1996年度のトレンチから約20m北東の位置にトレ ンチを掘削した(図45の「2020トレンチ」)。一方、令和4年度のトレンチ調査では、1996 年度のトレンチの南東脇でトレンチを掘削した(図45の「2022トレンチ」)。

図 45 東白坂地区で掘削したトレンチの位置 等高線は現地での実測に基づき、作成した。 1996 トレンチの掘削範囲を青線で、2020 トレンチの掘削範囲を赤線で、 2022 トレンチの掘削範囲を緑線で、それぞれ示す。

(令和2年度トレンチ調査)

令和2年度に掘削したトレンチ(2020トレンチ)は、全体として長さ約25mの範囲を深さ約2mまで掘り下げ、その中で約15mの範囲をさらに約2mの深さまで掘り下げた。トレンチの北東壁面と南西壁面では、南東へ傾斜する逆断層が観察された(図46、図47)。この断層は、トレンチ壁面の下部に分布するシルト層を変位させ、その上位の砂礫層及び小礫~粗砂層に覆われる。断層面の傾斜角は20~30°SEであるが、埋め戻し前に深さ約1m増し掘りしたところでは60°SEとなり、また75°SEの傾斜角を持つ断層面も観察された(図48)。

図 46 令和2年度に実施した東白坂トレンチ南西壁面の写真 赤線は観察された断層を示す。

図 47 令和2年度に実施した東白坂トレンチ北東壁面の写真 赤線は観察された断層を示す。

図 48 令和2年度に掘削した東白坂トレンチの増し掘り時の写真(南西壁面) 赤線は観察された断層を示す。数値は現地で計測した断層面の走向と傾斜角を表す。

(令和4年度トレンチ調査)

令和4年度に掘削したトレンチの形状は、長さ(北西-南東方向)が約25 m、幅(北東-南 西方向)が約8 m、深さが約4 mである。トレンチ壁面では、基盤の花崗岩とそれを覆う河 成堆積物、谷埋堆積物、古土壤、氾濫原堆積物が観察された(図49)。基盤の中に認められる 断層破砕帯の幅は約5 m程度であり、その最も北西側(下流側)が最新に活動した断層面で ある。最新活動を示す断層面の両側では、基盤の上面に約1 mの南東側隆起の高度差が認め られた(図49)。また、底盤では右横ずれを示す変形構造が確認された。トレンチ南東壁面で 観察された断層面の上端は、谷状の構造に侵食されており、谷を埋める堆積物によって覆わ れている。

図 49 令和4年度に掘削した東白坂トレンチの南西壁面の正射投影画像。

3) 火山灰分析

トレンチ壁面やボーリングコアで観察された地層の年代を推定するため、火山灰分析を 実施した。令和3年度には、富田地区で掘削したトレンチの壁面及び猿投山北断層帯の東白 坂地区で掘削したトレンチの壁面から採取した試料について火山灰分析を行なった。令和4 年度には、恵那山断層帯の阿木地区で掘削したボーリングコアから採取した試料について火 山灰分析を実施した。

a) 富田トレンチ

富田トレンチ北東壁面において、断層によって変位した地層の堆積時期を推定するため に、火山灰分析を実施した。トレンチ壁面の試料採取地点には、下部から砂礫、砂、粘土の 層が堆積しており、これらから数 cm~10cm 間隔で試料を連続採取して分析した。分析の結 果、粘土層はテフラの識別に有効なバブルウォールタイプの火山ガラスと高温型石英を含む ことを確認した(図 50)。純層ではなく粒子数はわずかであるが、番号 21-22 付近で上下よ り多量に分布する。この番号 21-22 付近の火山ガラスの屈折率は 1.496-1.498 を示し、主成 分元素組成は平均値が SiO₂ 含有率で 78.7 wt.%、TiO₂ で 0.2 wt.%、Al₂O₃ で 11.9 wt.%、FeO で 1.0 wt.%、MnO で 0.1 wt.%、MgO で 0.2 wt.%、CaO で 1.1 wt.%、Na₂O で 3.5 wt.%、K₂O で 3.4 wt.%付近にクラスターを形成する。これらの特徴は、鬼界-葛原(K-Tz)火山灰(約 9.5 万年前:町田・新井, 2003)の特徴と一致する(図 51)。これらのことから、粘土層の 堆積中に K-Tz 火山灰が降灰したと考えられる。そのため、粘土層の堆積時期は約 10 万年前 と考えられ、粘土層から数千年間のイベントの時期を決めることは無理である。しかし、K-Tz 火山灰は段丘面の離水年代の推定に有効な火山灰であり、平均変位速度の算出に適用で きる。

	番号	火山ガラス: Bw	高温型石英
	28	0.4	1.6
	27	0.4	0.7
	26	0.4	1.3
and the second sec	25	0	2
	24	1	1.2
	23	0.6	4
and the second sec	22	1.8	5.6
and the second s	21	0.7	6.2
and the second states and the second states and the	20	0	3.4
<u> </u>	19	0	1.3
	18	0.2	2
	17	0.1	0.7
· · · · · · · · · · · · · · · · · · ·	16	0.1	0.1
and all the second second	15	0	0.4
- Description	14	0.4	0
	13	0	0
File	12	0	0
	11	0	0
and the second s	10	0	0
	9	0	0
	8	0	0
The second is a second	7	0	0
	6	0	0
· · · · · · · · · · · · · · · · · · ·	5	0	0.1
Same and the second sec	4	0	0
	3	0	0
	2	0	0
	1	0	0
	B.v.	ベブ ニ ウ ナ ― ニ	しカイプ

Bw:ハフルウォールダイフ 火山ガラスと高温型石英の数字: 3000粒子中の粒子数

図 50 富田トレンチの北東壁面での火山灰試料の採取位置と火山灰分析の結果

図 51 番号 22 及び広域テフラの火山ガラスの主成分元素組成の結果 (SiO₂, K₂O, FeO) Kg: 天城カワゴ平火山灰、AT: 姶良 Tn 火山灰、 K-Tz: 鬼界-葛原火山灰

b) 令和2年度東白坂トレンチ

猿投山北断層によって変位した地層と断層を覆う地層の堆積時期を推定するために、令和 2年度に調査を実施した東白坂トレンチの南西壁面において火山灰分析を実施した。トレン チ壁面では、下部から粗砂、シルト、小礫〜粗砂、砂礫、腐植土の層が堆積しており、これ らから数 cm ~十数 cm 間隔で試料を連続採取して分析した(図 52)。分析の結果、腐植土 層は下位の地層に比べて多くのバブルウォールタイプの火山ガラスを含むことを確認した

(図 53)。その火山ガラスの屈折率は 1.508~1.516 (番号 20) であり、鬼界アカホヤ (K-Ah) 火山灰 (約 7,300 年前:町田・新井, 2003)の屈折率と一致する。また、腐植土層の 下位の砂礫層は、3,000 粒子中に 0.1~0.3 粒子と僅かにバブルウォールタイプの火山ガラ スを含む (図 53)。これより下位の地層には、バブルウォールタイプの火山ガラスが認めら れず、低発泡タイプの火山ガラスが認められる (図 53)。その火山ガラスの屈折率は 1.498 ~1.500 (番号 10) であり、姶良 Tn (AT)火山灰 (約 3 万年前: Smith et al., 2013)の屈 折率と一致する。

これらのことから、腐植土層は K-Ah 火山灰の降灰以降に堆積したと考えられる。さらに、 腐植土層の下位の砂礫層に僅かに含まれるバブルウォールタイプの火山ガラスが K-Ah 火山 灰であるなら、砂礫層も K-Ah 火山灰の降灰以降に堆積したと考えられる。砂礫層の下位の 地層は、K-Ah 火山灰の降灰以前(約 7,300 年前以前)に堆積した可能性があるが、それ以 上のことをこれらのデータから判断することは困難である。

図 52 令和 2 年度に実施した東白坂トレンチ南西壁面における火山灰試料採取位置

火山ガラス(数字:3000粒子中の粒子数 Bw:バブルウォールタイプ Pm:パミスタイプ O:低発泡タイプ

図 53 令和2年度に実施した東白坂トレンチの南西壁面から採取した火山灰試料の分析結果

c) 阿木地区ボーリングコア

令和3年度に恵那山断層阿木地区(中津川市)で実施したボーリング調査のコア試料について火山灰分析を実施し、掘削地点の高位段丘の形成年代を推定した。

ボーリングコアの深度 5 mから地表までについて、砂礫等の粗粒部及び地表付近では 10 ~20 cm 間隔で、ローム層については 5 cm 間隔で試料を採取し、全ての試料について火山 灰の検出を行なった後、火山ガラスの屈折率測定、化学組成分析を実施した。その結果、深 度 0.60-0.80 mから姶良-丹沢火山灰(AT;約3万年前:Smith et al., 2013)の火山ガラ スが、深度 1.2-1.5 mから鬼界-葛原火山灰(K-Tz;約9.5万年前:町田・新井, 200)の高 温石英が、それぞれ検出された(図 54)。ローム層の中位に K-Tz が含まれていることから、 ローム層の堆積速度がほぼ一定だったと仮定すれば、この高位段丘の形成年代は約20万年 前と推定される。

図 54 阿木地区で掘削したボーリングコアの火山灰分析結果

4)¹⁴C年代測定

ボーリングコア及びトレンチ壁面から採取した試料の¹⁴C(放射性炭素同位体)年代測定を 実施した。得られた年代測定結果に基づき、各地点における断層活動履歴を検討した。¹⁴C年 代測定を実施した試料は、富田地区ボーリングコア(令和2年度)、富田地区トレンチ壁面 (令和2年度)、東白坂地区トレンチ(令和2年度)、上手向地区トレンチ(令和4年度)、

(令和2年度)、東日坂地区トレンテ(令和2年度)、上手向地区トレンテ(令和4年度) 東白坂地区トレンチ(令和4年度)である。

年代値は、Bronk Ramsey (2009) に基づき、IntCal20 (Reimer et al., 2020) を用いて 暦年較正した値である。なお、令和2年度と令和3年度の報告書では暦年較正した年代値に ついてシグマ1とシグマ2の値が混在しているが、ここでは全てシグマ2の値に統一して表 記する。以下に、それぞれの測定結果を記述する。

a) 富田地区ボーリング(岐阜県恵那市岩村町:令和2年度)

富田地区で掘削したボーリングコアのうち、T-1孔のコアから採取した1試料及びT-4孔 のコアから採取した5試料について¹⁴C年代測定を実施した。しかしながら、得られた年代値 は非常に新しく(表3)、これらの試料は人工的に埋積されたものか、あるいはボーリング 掘削時に混入したものと考えられる。したがって、地形面の形成年代や断層活動時期の議論 に用いることはできなかった。

試料番号	ラボ番号	採取位置	試料種類	Conventional age (yBP)	暦年代 (2 <i>σ</i> : cal.yBP)	暦年代 (1 <i>σ</i> :cal.yBP)
Br-T-1_2.08	IAAA-202002	T-1 孔 深度 2.08 m	wood	Modern		
Br-T-4_2.62	IAAA-201973	T-4 孔 深度 2.62 m	wood	Modern		
Br-T-4_2.80	IAAA-201977	T-4 孔 深度 2.80 m	leaf	50 ± 20		
Br-T-4_2.85	IAAA-201981	T-4 孔 深度 2.85 m	wood	10 ± 20		
Br-T-4_2.93	IAAA-201983	T-4 孔 深度 2.93 m	charcoal	Modern		
Br-T-4_3.00	IAAA-201984	T-4 孔 深度 3.00 m	leaf	40 ± 20		17

表3 富田地区で掘削したボーリングコアから採取した試料の¹⁴C年代測定結果

b) 富田地区トレンチ(岐阜県恵那市岩村町:令和2年度)

富田地区で掘削したトレンチの壁面から14試料を採取し(図55、図56)、¹⁴C年代測定を 試みた。得られた年代値のうちT-10、T-11、T-17、T-18、T-21については、非常に新しい年 代を示しており(表4)、これらの試料は人工的に埋積されたものか、あるいは植物の根等 が混入したものと考えられる。したがって、これらの年代値については、断層活動時期の議 論に用いないこととした。

図55 富田トレンチ北東壁面における¹⁴C年代測定試料採取位置

図56 富田トレンチ南西壁面における¹⁴C年代測定試料採取位置

試料番号	試料番号 ラボ番号 採取位置		試料種類	Conventional age (yBP)	暦年代 (2 <i>σ</i> : cal.yBP)	暦年代 (1 <i>σ</i> ∶cal.yBP)
T-7	IAAA-201993	北東壁面	soil	$2,540\pm20$	2,742 - 2,500	2,737 - 2,541
T-8	IAAA-201994	北東壁面	soil	$2,090 \pm 20$	2,120 - 1,950	2,097 - 1,998
T-9	IAAA-201995	北東壁面	soil	$2,000 \pm 20$	1,994 - 1,842	1,986 - 1,890
T-10	IAAA-201996	北東壁面	plant	130 ± 20	269 - 13	261 - 27
T-11	IAAA-201997	北東壁面	plant	100 ± 20	258 - 32	253 - 40
T-12	IAAA-201998	南西壁面	soil	480 ± 20	537 - 501	525 - 509
T-13	IAAA-201999	南西壁面	soil	2,350 \pm 20	2,461 - 2,333	2,364 - 2,339
T-14	IAAA-202000	北東壁面	organic sediment	$2,\!350\pm20$	2,461 - 2,333	2,364 - 2,339
T-15	IAAA-202001	北東壁面	organic sediment	$8,160 \pm 30$	9,264 - 9,008	9,125 - 9,020
T-17	IAAA-201988	北東壁面	plant	180 ± 20	290 -	283 -
T-18	IAAA-201989	北東壁面	charcoal	0 ± 20	250 - 41	240 - 46
T-21	IAAA-202230	南西壁面	bulb	Modern		
T-23	IAAA-202231	南西壁面	organic sediment	6,340± 30	7,324 - 7,166	7,309 - 7,174
T-24	IAAA-202232	南西壁面	organic sediment	9,220± 40	10,497 - 10,252	10,485 - 10,291

表4 富田地区トレンチの壁面から採取した試料の14C年代測定結果

c) 上手向地区トレンチ(岐阜県恵那市山岡町: 令和4年度)

上手向地区で掘削したトレンチの壁面から採取した25試料(図57、図57)について、¹⁴C 年代測定を試みた。得られた年代値のうちKTG-32とKTG-34については、現世のものとの分析 結果であった(表5)。これらの試料は人工的に埋積されたものか、あるいは植物の根等が 混入したものと考えられる。したがって、これらの年代値については、断層活動時期の議論 に用いないこととした。また、KTG-10及びKTG-14はAMS法による計測限界を超えていた。

図57 上手向トレンチ北東壁面における¹⁴C年代測定試料採取位置

図58 上手向トレンチ南西壁面における¹⁴C年代測定試料採取位置

試料番号	ラボ番号	採取位置	試料種類	Conventional age (yBP)	暦年代 (2 <i>o</i> :Cal.yBP)	暦年代 (1 σ : Cal.yBP)
KTG-01	Beta-656032	北東壁面 E 14.30 / 0.7	0 organic sediment	1,190 ± 30	1,242 - 998	1,176 - 1,064
KTG-04	Beta-656033	北東壁面 E 13.45 / 0.3	0 organic sediment	1,560 \pm 30	1,525 - 1,375	1,514 - 1,388
KTG-05	Beta-656034	北東壁面 E 10.70 / 0.7	0 organic sediment	$3,\!280\pm30$	3,569 - 3,411	3,556 - 3,455
KTG-06	Beta-656035	北東壁面 E 10.50 / 0.8	5 organic sediment	$3,710\pm50$	4,150 - 3,932	4,140 - 3,986
KTG-07	Beta-656036	北東壁面 E 10.05 / 1.0	0 organic sediment	$2,\!860\pm30$	3,071 - 2,876	3,057 - 2,888
KTG-08	Beta-656037	北東壁面 E 9.75 / 0.75	organic sediment	$3,490 \pm 30$	3,841 - 3,647	3,829 - 3,700
KTG-10	Beta-656038	北東壁面 E 9.35 / 1.05	wood	>43,500	-	-
KTG-11	Beta-656039	北東壁面 E 9.20 / 1.05	organic sediment	4,950 \pm 30	5,733 - 5,598	5,714 -5, 603
KTG-14	Beta-656040	北東壁面 E 8.70 / 0.80	organic sediment	>43,500	-	-
KTG-17	Beta-656041	北東壁面 E 6.90 / 1.20	organic sediment	$36,560 \pm 360$	42,032 - 40,991	41,813 - 41,257
KTG-18	Beta-656042	北東壁面 E 6.55 / 1.40	organic sediment	$37,980 \pm 420$	42,603 - 41,883	42,421 - 42,097
KTG-19	Beta-656043	北東壁面 E 1.80 / 3.30	organic sediment	$3,730\pm30$	4,221 - 3,981	4,148 - 3,991
KTG-20	Beta-656044	北東壁面 E 3.50 / 2.90	soil	$3,040 \pm 30$	3,350 - 3,165	3,332 - 3,180
KTG-21	Beta-656045	北東壁面 E 3.50 / 2.50	soil	$2,\!620\pm30$	2,776 - 2,721	2,759 - 2,736
KTG-22	Beta-656046	北東壁面 E 3.80 / 3.10	soil	$2,120\pm30$	2,292 - 1,998	2,124 - 2,005
KTG-23	Beta-656047	北東壁面 E 3.80 / 2.90	soil	$2,\!980\pm30$	3,324 - 3,007	3,210 - 3,180
KTG-24	Beta-656048	北東壁面 E 3.80 / 2.70	soil	$3,860\pm30$	4,409 - 4,155	4,401 - 4,185
KTG-25	Beta-656049	北東壁面 E 3.80 / 2.50	organic sediment	$2,100 \pm 30$	2,285 - 1,954	2,106 - 2,003
KTG-28	Beta-656050	南西壁面 W 9.90 / 0.6) organic sediment	$33,690 \pm 250$	39,330 - 37,649	39,216 - 38,252
KTG-29	Beta-656051	南西壁面 W 10.25 / 0.	50 organic sediment	$30,810 \pm 190$	35,555 - 34,664	35,366 - 34,875
KTG-32	Beta-656052	南西壁面 W 12.00 / 0.	70 plant	Modern	-	-
KTG-33	Beta-656053	南西壁面 W 12.05 / 0.	75 organic sediment	$38,920 \pm 470$	43,034 - 42,231	42,759 - 42,409
KTG-34	Beta-656054	南西壁面 W 12.25 / 0.	75 plant	Modern	-	-
KTG-35	Beta-656055	南西壁面 W 12.40 / 0.	77 organic sediment	$2,\!880\pm30$	3,146 - 2,881	3,061 - 2,961
KTG-36	Beta-656056	南西壁面 W 12.40 / 0.	50 organic sediment	$1,660 \pm 30$	1,690 - 1,416	1,684 - 1,520

表5 上手向地区トレンチの壁面から採取した試料の¹⁴C年代測定結果

d) 東白坂地区トレンチ (愛知県瀬戸市: 令和2年度)

東白坂地区で掘削したトレンチの壁面から採取した16試料について¹⁴C年代測定を試みた。 トレンチの北西壁面から2試料、北東壁面の上段から2試料、北東壁面の下段から3試料(図5 9)、南西壁面から7試料(図60)、南西壁面の増し掘り部分から2試料(図61)について年 代測定を実施した。北西壁面から採取した試料は埋没土壌の層準から採取した木炭であり、 この埋没土壌は南西壁面のH-18、H-19を採取した層準から連続する層準である。北東壁面の 上段から採取された試料(H-6、H-7)の年代値については、非常に新しい年代を示しており (表6)、これらの試料は何らかの理由で最近の試料が混入したか、地下水等の影響により 汚染されたものと考えられる。したがって、これらの年代値については、断層活動時期の議 論に用いないこととした。北東壁面の下段から採取した試料はいずれも木炭である(図59)。 南西壁面から採取した試料は、古土壌層から採取した太炭と土壌、砂層から採取した腐植質 砂である(図60)。南西壁面の増し掘り部分から採取した試料は、原型をよく留めた保存状 態が良い材である(図61)。それぞれの試料について年代測定を行なった結果を表6にまと めた。

図59 令和2年度東白坂トレンチ北東壁面における¹⁴C年代測定試料採取位置 赤線は壁面で観察された断層を示す。

図60 令和2年度東白坂トレンチ南西壁面における¹⁴C年代測定試料採取位置 赤線は壁面で観察された断層を示す。

図61 令和2年度東白坂トレンチ南西壁面(増し掘り部分)における¹⁴C年代測定試料採取位置

赤線は壁面で観察された断層を示す。

表6 令和2年度東白坂地区トレンチの壁面から採取した試料の¹⁴C年代測定結果

試料番号	ラボ番号	採取位置	試料種類	Conventional age (yBP)	暦年代 (2 <i>σ</i> ∶cal.yBP)	暦年代 (1 <i>σ</i> :cal.yBP)
H-2	IAAA-201974	北西壁面	charcoal	$4,030 \pm 30$	4,573 - 4,421	4,528 - 4,437
H-3	IAAA-201975	北西壁面	charcoal	$4,060 \pm 30$	4,787 - 4,425	4,575 - 4,446
H-6	IAAA-201978	北東壁面(上段)	wood	Modern		
H-7	IAAA-201979	北東壁面(上段)	charcoal	230 ± 20	313 - 150	302 - 156
H-8	IAAA-201980	北東壁面(下段)	charcoal	17,870 \pm 60	21,960 - 21,434	21,895 - 21,480
H-10	IAAA-201982	北東壁面(下段)	charcoal	14,510 \pm 40	17,909 - 17,449	17,840 - 17,540
H-13	IAAA-201985	北東壁面(下段)	charcoal	14,500 \pm 50	17,897 - 17,437	17,810 - 17,529
H-16	IAAA-201991	南西壁面	sediment	9,790 \pm 30	11,249 - 11,178	11,234 - 11,198
H-17	IAAA-201992	南西壁面	organic sediment	$4,000 \pm 30$	4,523 - 4,417	4,516 - 4,423
H-18	IAAA-201976	南西壁面	charcoal	$4,040 \pm 30$	4,579 - 4,420	4,568 - 4,440
H-19	IAAA-201990	南西壁面	organic sediment	$4,350 \pm 20$	4,973 - 4,853	4,960 - 4,861
H-21	IAAA-201986	南西壁面	charcoal	$4,460 \pm 30$	5,284 - 4,971	5,272 - 4,980
H-23	IAAA-201987	南西壁面	charcoal	$4,480 \pm 30$	5,290 - 4,985	5,279 - 5,049
H-25	IAAA-202233	南西壁面	sediment	5,190 \pm 30	5,997 - 5,906	5,990 - 5,915
H-32	IAAA-202228	増し掘り	wood	$18,160 \pm 60$	22,286 - 21,961	22,198 - 22,038
H-33	IAAA-202229	増し掘り	wood	18,070 \pm 60	22,188 - 21,838	22,105 - 21,940

e) 東白坂地区トレンチ (愛知県瀬戸市: 令和4年度)

東白坂地区で掘削したトレンチの壁面から採取した10試料(南東壁面:8試料、北西壁 面:2試料)について¹⁴C年代測定を試みた。南東壁面については、断層構造から離れた位置 から採取した3試料の古土壌と、断層構造付近から採取した5試料について年代測定を行な った(図62)。古土壌から得られた年代値のうちHSS-04とHSS-06の間で年代と層位関係に逆 転がみられた(表7)が、どちらが正しい値を示しているのか判断が難しい。北西壁面では、 断層変位を受けた地層から採取した試料(HSS-L)と断層構造を覆う地層から採取した試料 (HSS-M)について年代測定を実施した。

図62 令和4年度東白坂トレンチ南東壁面における¹⁴C年代測定試料採取位置

試料番号	ラボ番号 採取位置		試料種類	Conventional age (yBP)	暦年代 (2 <i>σ</i> ∶cal.yBP)	暦年代 (1 σ : cal.yBP)
HSS-04	Beta-657497	S 13.30 / 4.10	charcoal	$7,900 \pm 30$	8,977 - 8,596	8,768 - 8,604
HSS-06	Beta-657498	S 13.30 / 4.00	organic sediment	$4,360 \pm 30$	5,033 - 4,852	4,960 - 4,865
HSS-10	Beta-657499	S 13.30 / 3.60	organic sediment	$8,700 \pm 30$	9,748 - 9,546	9,679 - 9,556
HSS-19	Beta-657500	S 7.10 / 2.00	wood	$17,180 \pm 50$	20,881 - 20,561	20,838 - 20,645
HSS-21	Beta-657501	S 7.10 / 2.00	organic sediment	$8,470 \pm 30$	9,535 - 9,446	9,527 - 9,477
HSS-23	Beta-657502	S 6.05 / 2.80	organic sediment	600 ± 30	650 - 542	636 - 552
HSS-24	Beta-657503	S 5.50 / 2.70	plant	840 ± 30	774 - 684	774 - 690
HSS-25	Beta-657504	S 5.55 / 2.50	organic sediment	$7,620 \pm 30$	8,514 - 8,368	8,420 - 8,365
HSS-L	Beta-657505	北東壁面(増し掘り)	organic sediment	$12,290 \pm 30$	14,787 - 14,089	14,275 - 14,125
HSS-M	Beta-657506	北東壁面(増し掘り)	plant	830 ± 30	784 - 682	770 - 687

表7 令和4年度東白坂地区トレンチの壁面から採取した試料の¹⁴C年代測定結果

5) 断層運動履歴の検討

恵那山-猿投山北断層帯の断層運動履歴について、a)断層活動時期とb)平均変位速度および c)断層運動方向の検討を行なった。

a) 断層活動時期の検討

トレンチ調査を実施した各地点について、¹⁴C年代測定や火山灰分析の結果に基づいて断 層活動時期について検討した。次に、それらの結果と既往調査で明らかにされている断層活 動時期について、恵那山断層と猿投山北断層に分けて時空間ダイアグラムを作成し、それぞ れの活断層の活動時期について考察した。さらに、両活断層が同時に活動した可能性がある 時期について検討を行った。

i) 富田地区トレンチ

トレンチ壁面では、粘土層の上に礫混じり粘土層がのし上げる断層が認められ、その断層の上端は北東壁面では腐植土に、南西壁面では砂礫層に覆われている構造が観察された。 この腐植土(T-7、T-8)からは約2,000年前から約2,500年前の放射性炭素同位体年代が得ら れた(図63)。また、断層によって切られている粘土層中から採取した腐植質の土塊(T-1 5)からは9,264-9,008 cal.yBPの放射性炭素同位体年代が得られた。一方、南西壁面では腐 植土の下位に小礫混じり砂層が分布し、断層構造を覆っている(図64)。断層構造を覆う砂 礫層から採取した腐植質砂(T-23)から暦年較正した値で7,324-7,166 cal.yBPの年代が得 られた。一方、断層構造に切られている礫混じりシルト層から採取した腐植質砂(T-24)か らは、暦年較正した値で10,497-10,252 cal.yBPの年代が得られた。北東壁面から採取され たT-15の試料は低い炭素含有率を示すため、求められた年代値の信頼性にやや疑問が残る点 に留意する必要がある。そのため、断層変位を受けている地層の年代としてT-24を用いるこ ととした。したがって、富田トレンチにおける恵那山断層の最新活動時期は、10,497 cal.y BP以降、7,166 cal.yBP以前であると判断される(図64)。

図63 富田トレンチ北東壁面(上段)で観察された断層構造と¹⁴C年代

図64 富田トレンチ南西壁面(上段)で観察された断層構造と¹⁴C年代及び今回の調査結果から推定される断層活動時期

ii) 上手向地区トレンチ

上手向地区トレンチでは、堆積構造に基づいて谷底堆積物は新旧に区分することができ、 そのうちの旧期の谷底堆積物には水平方向に押されて変形した構造が認められるが、新期の 谷底堆積物にはそのような変形構造は見られない様子が観察された。したがって、旧期の谷 底堆積物の堆積後、新期の谷底堆積物の堆積前に地層が変形するイベントが発生したことが 推定される。

新旧の谷底堆積物から得られた年代値(図65、図66)に基づくと、この地点でイベント が発生した時期は3,071 cal.yBP 以降、1,375 cal.yBP 以前と推定される。また、崩壊堆積 物に取り込まれるように分布している腐植質砂(KTG-21, KTG-25)の年代値(2,776-2,721 cal.yBP、2,285-1,954 cal.yBP)は、イベントが発生した際に既に堆積していた表土の年代 を表している可能性がある。

図 65 上手向トレンチ北東壁面で観察された地質構造と¹⁴C 年代測定結果

図 66 上手向トレンチ南西壁面で観察された地質構造と¹⁴C 年代測定結果

iii) 東白坂地区トレンチ

東白坂地区では令和2年度と令和4年度の2回にわたってトレンチ調査を実施した。 令和2年度のトレンチ調査に基づく猿投山北断層の活動時期は、南西壁面で断層変位を 受けているシルト層中から採取された木炭の年代から 11,249 cal. yBP 以後であると推定さ れる(図 67)。一方、南西壁面で観察された腐植質シルトが断層運動によって変位を受けて いないとすると、断層活動時期は5,906 cal.yBP 以前となる。ただし、地形面に高低差があ り、砂礫(土石流堆積物)がその地形面と調和的な構造を示していることから、砂礫(土石 流堆積物)堆積後に撓曲変形が生じた可能性が残る。南西壁面の増し掘り部分(図68)と 北東壁面の下段(図 69)から2万年前前後の年代値が得られている。南壁面の増し掘り部 分では、3条の断層が認められ、そのうちで最も北西側(下流側)の断層(f-1)が増し掘 りする前に観察されていた断層に連続する (図 69)。そのほかの断層は、年代測定を実施し た H-32の試料を含む地層を変位させる断層(f-2)と、H-33を含む地層を切断して H-32を 含む地層に覆われる断層(f-3)である。これらのことから、H-32を含む層準とH-16を含 む層準の間(f-2の活動)及びH-32を含む層準とH-33を含む層準の間(f-3の活動)に、 それぞれ断層活動があったことが推定される。これらのうち、f-2の活動時期については、 H-32 と H-16 の年代値に基づき、22,286 cal.yBP 以後、11,178 cal.yBP 以前と推定される (断層活動時期2)。また、f-3の活動時期については、H-32とH-33の年代値が逆転してい

るため限定的になるが、22,188 cal. yBP 以後、21,961 cal. yBP 以前と推定される(断層活動時期3)。

令和4年度に実施したトレンチ調査では、断層によって切られている地層から得られた最 も新しい年代値と、断層を覆う地層から得られた最も古い年代値に基づくと、今回のトレン チ調査で明らかにされた猿投山北断層の最新活動時期は、8,514 cal.yBP以後、684 cal.yBP以前である(図70、図71)。令和4年度に実施したトレンチ調査では、最新活動以 前の断層活動時期を読み取ることはできない。

図 67 令和2年度東白坂トレンチ南西壁面で観察された地質構造と¹⁴C年代測定結果

図 68 令和2年度東白坂トレンチ北東壁面で観察された地質構造と¹⁴C年代測定結果

図 69 令和2年度東白坂トレンチ調査の結果から推定される断層活動時期

図 70 令和4年度東白坂トレンチ南西壁面で観察された地質構造と¹⁴C年代測定結果

図 71 令和4年度東白坂トレンチ調査の結果から推定される猿投山北断層の活動時期

iv) 恵那山-猿投山北断層帯の活動履歴

恵那山-猿投山北断層帯における従来の調査結果および今回のトレンチ調査の結果に基づいて断層活動の時空間ダイアグラム(図72)を作成し、同断層帯の活動履歴を検討した。 恵那山断層については、活動1(最新活動)以前の活動時期については十分な情報が得られなかったため、地震調査研究推進本部地震調査委員会(2004)の長期評価が示した断層活動時期を用いて活動間隔及び活動区間に関する議論を進める。

地震調査研究推進本部地震調査委員会(2004)による長期評価では、活動1について「約7,600年前以後、約5,400年前以前」に断層帯全体が活動したとされている。本プロジェクトで実施した調査結果を踏まえても断層帯全体が活動した可能性が残されており、その時期は「約7,600年前以後、約7,200年前以前」に限定される(図73)。活動2(最新活動よりも一つ前の断層活動)及び活動3について、恵那山断層には地震調査研究推進本部地震調査委員会(2004)の情報を、猿投山北断層には本プロジェクトの成果による活動時期を用いると、活動2の発生時期は「約21,000年前以後、約11,200年前以前」、活動3の発生時期は「約22,200年前以後、約22,000年前以前」となる。活動1と活動2の活動間隔は「3,600-

13,800年」、活動2と活動3の活動間隔は「1,000-11,000年」となる。これら過去3回の活動時期に基づき、活動1と活動3の活動間隔を等分して求めた恵那山-猿投山北断層帯の平均活動間隔は「約6,000-8,700年」と推定される(図73の平均活動間隔①)。別の方法として現在までの経過時間を含めた場合の平均活動間隔を算出すると、約22,200年前以降に3回の活動時期が推定されることから、「約7,400年」と求めることができる(図73の平均活動間隔②)。

次に、同じ時空間ダイアグラムを用いて、恵那山-猿投山断層帯が「恵那山断層」と「猿 投山北断層」の2つの活動区間に分けられると仮定した場合の活動間隔を検討した(図 74)。 この場合には、「恵那山断層」の活動時期は「約 7,600 年前以後、約 7,200 年前以前」とな る。活動間隔については、活動2の発生時期について従来の長期評価結果(約 21,000 年前 以後、約 11,000 年前以前)を用いると、活動1と活動2の活動間隔は「約 3,400-13,800 年」となる。一方、「猿投山北断層」を単独で評価すると、活動1 (最新活動時期)は「約 8,500 年前以後、約 5,900 年前以前」、活動2は「約 22,300 年前以後、約 11,200 年前以前」、 活動3は「約 22,200 年前以後、約 22,000 年前以前」となる。活動間隔については、活動1 と活動2の間は「約 2,700-16,400 年」と算出される。活動2と活動3の活動間隔について は、活動3の活動時期が活動2の活動時期の範囲に含まれてしまうため「約 11,000 年より も短い」としか言うことができない(図 74)。また、活動1と活動3の活動間隔を等分して 求めた平均活動間隔は、恵那山断層(活動2と活動3については地震調査研究推進本部地震 調査委員会(2004)の長期評価に基づく)については「約 7,200-13,400 年(平均:約 10,300 年)」、猿投山北断層については「約 6,750-8,150 年(平均:約7,450 年)」と算出さ れる(図 75)。

図 72 恵那山-猿投山北断層帯における断層活動時期の時空間ダイアグラム

図 73 恵那山-猿投山北断層帯を一区間とした場合の平均活動間隔

図 74 恵那山-猿投山北断層帯を2つの活動区間とした場合の活動間隔

図 75 過去の3回の断層活動時期に基づく恵那山断層と猿投山北断層の平均活動間隔

b) 断層運動方向の検討

恵那山断層の断層運動方向に関する情報を取得するため、岐阜県恵那市山岡町原に位置す る丸原鉱山内の大規模な露頭において、4か所にピットを掘削し、ピット内の断層破砕帯を 詳細に観察した。

断層運動が生じた際、その痕跡が断層面上に筋状に残されたものを条線と呼ぶ。条線を注 意深く観察すると、断層運動方向に対応した非対称構造が観察される(Petit, 1987; Fossen, 2010)。この点に着目し、本調査では基盤岩中の露頭観察を実施し、条線等の観察 結果に基づいて恵那山断層の断層運動方向に関する情報を取得した。

さらに、露頭の全体像とピット内に見られる断層の位置関係を明らかにするため、デジタ ル露頭モデル(DOM: Digital out crop model,例えば Triantafyllou et al., 2019)を構 築した(図76)。露頭全体のデジタル露頭モデルについては、ピット掘削前後のものを構築 した。またピット掘削後に、断層破砕帯の詳細記載の前に各ピットのデジタル露頭モデルを 構築した。デジタル露頭モデル構築には、複数のデジタル写真撮影に基づく Structure from Motion と Multi View Stereo (SfM/MVS,例えば Furukawa and Hernández, 2015; Bemis et al., 2014)を手法として用い、モデル構築ソフトウェアとして Agisoft 社の Metashape を用いた。また露頭全体の DOM 内に、地理座標の基準となる GCP (Ground Control Point)を6箇所設置し、これらのうち2か所について VRS (仮想基準点)方式の ネットワーク型 RTK-OTF 観測 (GNSS 測量)、全箇所についてトータルステーションを用いた 測量を行った。これらの測量により構築した DOM に地理座標情報を与えた。本調査では地理 座標は、JGD2011(日本測地系 2011)により算出したものを平面直角座標第 VII 系で表し、 標高は東京湾平均海面を基準とした。

露頭全体の DOM の構築には、DJI 社製 UAV (Unmanned Aerial Vehicle) Phantom 4 Pro 2.0 により空撮したデジタル画像を用いた。また各ピットの構築にはデジタルカメラ OLYMPUS TG-5 により撮影した画像を用いた。

ピット内の露頭は表面をねじり鎌等で、上記の目的を達成するのに適した状態にした。露 頭表面の整形後に、露頭表面に水平方向、垂直方向に水糸を張った。水糸を張ったのちに各 ピットの DOM を構築し、断層の構造要素の位置関係の記載、各種変形構造の記載と方向の測 定を行った。方向を測定した構造の中には、面構造だけではなく、線構造も含む。また後日、 顕微鏡観察を行うことができるように、観察地点周辺から断層破砕帯の定方位試料を必要に 応じ採取した。なお、断層面の方位の測定においては、露頭での直接測定の他に DOM を構築 することにより得られた断層沿いの点群について、最小二乗法により平面回帰を行うことに よっても計算を行った。

図 76 SfM-MVS によるデジタル露頭モデル (DOM) の構築

i) 調査箇所

調査対象とする露頭は岐阜県恵那市山岡町原の丸原鉱山所有地に位置する。丸原鉱山の山際(北西斜面)に恵那山断層が露出しており、岩村層群遠山層の砂岩礫岩層または領家帯の 花崗岩類が瀬戸層群東原層(陶土層)に衝上する。鉱山東部の20m×50m四方の範囲を主 な調査範囲とした(図77)。

図 77 丸原鉱山(恵那市)で実施した断層運動方向調査の調査範囲。 基図には都市圏活断層図「恵那」(宮内・他, 2017)を使用した。

ii) 露頭全体と各ピットのデジタル露頭モデル (DOM)、ピット掘削位置決定

断層構造等に関する記載の空間的位置関係を正確に記録するために、ピット掘削前に露頭 周辺に位置決定の基準になるグラウンドコントロールポイント(GCP)を計6カ所設置した。 次に、調査予定範囲において UAV により 335 枚の空撮画像を取得し、これに基づき露頭全 体の DOM を構築した(図 78a)。

構築したモデルに基づき、6箇所のピット掘削の候補地を検討した。これらのうち現場の 状況等を考慮し、恵那山断層沿いの合計4箇所で重機による掘削を行い、東からPit 1、 Pit 3、Pit 4、Pit 6と名付けた(図 78b)。恵那山断層は逆断層成分が強い右横ずれ断層と されているため、各ピットは断層面の最大傾斜方向とほぼ直交する断面を露出させるように 掘削した。元々の露頭形状や壁面状態から、Pit 1では1壁面の1箇所、Pit 3では東壁面 と西壁面の2箇所、Pit 4では東壁面・南壁面・西壁面の3箇所、Pit 6では東壁面・南壁 面・西壁面の3箇所の合計9箇所の壁面で観察を行った。

なお、露頭全体の DOM 構築にあたっては6箇所の GCP をマニュアルタイポイントとし SfM 計算の精度向上を図った。

またピット掘削後に UAV により 471 枚の空撮画像を取得し、これに基づき露頭全体の DOM を構築した(図 79)。

さらに Pit 1 について 148 枚、Pit 3 について 146 枚、Pit 4 について 86 枚、Pit 6 に ついて 201 枚のデジタルカメラによる画像を取得し、それぞれのピットについて DOM を構築 した(図 80)。Pit 1 と Pit 6 については航空標識を設置し露頭全体の DOM 構築との位置合 わせに用いた。なお、各ピットの DOM 構築にあたっては、航空標識もしくはピット内の水糸 の交点をマニュアルタイポイントとし SfM 計算の精度向上を図った。

図 78 北西方向から俯瞰したピット掘削前露頭全体の DOM (a) 6 箇所の GCP 位置。 (b)ピット位置図。北東より Pit 1、 Pit 3、 Pit 4、 Pit 6。

図 79 北西方向から俯瞰したピット掘削後露頭全体の DOM 6 箇所の GCP 位置を示した。

図 80 各ピットの DOM (a) Pit 1 (b) Pit 3 (c) Pit 4 (d) Pit 6

iii) GCP 測量とデジタル露頭モデル (DOM) の地理座標

本調査で得られた GCP の測量座標一覧を表8、測量成果図を図81 に示す。表中の「杭長」は、測量実施時に標点とした杭が地表から出た鉛直方向の長さ(m)を示す。GCP2、GCP6 に対する GNSS 測量については2セッション観測を行い、XYZ 値を求め、その標準偏差は1 cm 以内であった。またトータルステーションによる1 対回観測における各測点の XYZ の較差は最大で2 mm であった。

これらの GCP の測量座標に基づき掘削の前後に構築した露頭全体の DOM に地理座標を与えた。この結果、掘削前の DOM に基づく地理座標と実際の測量結果の残差二乗平均は 6 cm (表9)、掘削後の DOM に基づく地理座標と実際の測量結果の残差二乗平均は 3.8 cm (表10) であった。

各ピットの DOM の地理座標については、掘削後の露頭全体の DOM から得られた地理座標に 基づき決定した。表 11~表 14 に掘削後の露頭全体の DOM に基づく地理座標と各ピットの DOM に基づく地理座標の比較を示した。各ピットの地理座標の残差二乗平均は、Pit 1 が 1.6 cm、Pit 3 が 3.1 cm、Pit 4 が 2.5 cm、Pit 6 が 1.7 cm であった。

測点名	X座標	Y座標	緯度(北緯) (度分秒)	経度(東経) (度分秒)	標高 (Z 座標)	杭長 (m)
GCP1	-74181.383	18244. 676	35°19' 52. 2539"	137°22'02.4835"	509.031	0.220
GCP2	-74169.496	18230. 689	35°19' 52. 6405"	137°22'01.9306"	505.194	0.245
GCP3	-74190.302	18240.800	35°19'51.9647"	137°22'02.3293"	510.848	0.167
GCP4	-74170.445	18253. 421	35°19' 52. 6083"	137°22'02.8307"	507.219	0.170
GCP5	-74173.803	18256.921	35°19' 52. 4991"	137°22'02.9690"	510. 489	0.200
GCP6	-74149.561	18272. 310	35°19' 53. 2847"	137°22'03.5804"	509. 533	0.135

表8 測量座標一覧

座標測地系は WGS84(測地成果 2011)とする。

図 81 GCP 測量成果図

表9	ピット掘削前、	露頭全体 DOM の地理座標と測量値の比較
----	---------	-----------------------

GCPs	Survey			Digital Outcrop Model			Residual			D distance	DA2
	Y	Х	Z	Y	Х	Z	⊿Y	⊿x	⊿z	R distance	D'2
GCP1	18244.6760	-74181.3830	509.0310	18244.6665	-74181.3600	509.0600	0.0095	-0.0230	-0.0290	0.038	0.001
GCP2	18230.6890	-74169.4960	505.1940	18230.7214	-74169.4877	505.1260	-0.0324	-0.0083	0.0680	0.076	0.006
GCP3	18240.8000	-74190.3020	510.8480	18240.7786	-74190.2769	510.8910	0.0214	-0.0251	-0.0430	0.054	0.003
GCP4	18253.4210	-74170.4450	507.2190	18253.3481	-74170.4609	507.2040	0.0729	0.0159	0.0150	0.076	0.006
GCP5	18256.9210	-74173.8030	510.4890	18256.8801	-74173.8019	510.5080	0.0409	-0.0011	-0.0190	0.045	0.002
GCP6	18272.3100	-74149.5610	509.5330	18272.3653	-74149.5425	509.5390	-0.0553	-0.0185	-0.0060	0.059	0.003
										0.058	0.060

表 10 ピット掘削後、露頭全体 DOM の地理座標と測量値の比較

CCDc	Survey			Digital Outcrop Model			Re	sidual		D distance	542
OULS	Y	Х	Z	Y	Х	Z	ΔY	Δx	ΔZ	R distance	D^2
GCP1	18244.6750	-74181.3830	509.0310	18244.6665	-74181.3672	509.0329	0.0002	-0.0158	-0.0019	0.016	0.000
GCP2	18230.6890	-74169.4960	505.1940	18230.7214	-74169.4844	505.1779	0.0055	-0.0116	0.0161	0.021	0.000
GCP3	18240.8000	-74190.3020	510.8480	18240.7786	-74190.3516	510.8422	0.0422	0.0496	0.0058	0.065	0.004
GCP4	18253.4210	-74170.4450	507.2190	18253.3481	-74170.4375	507.2000	0.0167	-0.0075	0.0190	0.026	0.001
GCP5	18256.9210	-74173.8030	510.4890	18256.8801	-74173.8359	510.5013	-0.0321	0.0329	-0.0123	0.048	0.002
GCP6	18272.3100	-74149.5610	509.5330	18272.3653	-74149.5469	509.5341	-0.0220	-0.0141	-0.0011	-0.026	0.001
1 2		- X.		2 S							0.038

表 11 Pit 1の DOM と掘削後の露頭全体の DOM で得られた地理座標の比較

Control	露頭全体 DOM 位置座標			Pit 1 DOM 位置座標				Residual		R distance	D^2
Points	Y	Х	Z	Y	Х	Z	⊿Y	⊿x	⊿z	i t diotarioe	52
Point 1	18281.9531	-74161.5156	512.3881	18281.9467	-74161.5208	512.3820	0.0065	0.0051	0.0061	0.010	0.000
Point 2	18281.9297	-74163.6953	513.0460	18281.9352	-74163.7031	513.0610	-0.0055	0.0078	-0.0150	0.018	0.000
Point 3	18281.1523	-74165.0625	512.9219	18281.1353	-74165.0586	512.9170	0.0171	-0.0039	0.0049	0.018	0.000
										Residual	0.016

表 12 Pit 3の DOM と掘削後の露頭全体の DOM で得られた地理座標の比較

Control	露頭全体 DOM			Pit	Pit 3 DOM 位置座標			Residual			D^2
Points	Y	Х	Z	Y	Х	Z	⊿Y	⊿x	⊿z	it alotarioo	02
Point 1	18255.1289	-74178.9531	508.6685	18255.1395	-74178.9853	508.6550	-0.0106	0.0322	0.0135	0.036	0.001
Point 2	18254.9473	-74178.2266	509.1147	18254.9752	-74178.2012	509.1290	-0.0279	-0.0254	-0.0143	0.040	0.002
Point 6	18249.6895	-74180.0078	508.6566	18249.6924	-74180.0097	508.6560	-0.0030	0.0019	0.0006	0.004	0.000
										Residual	0.031

表 13 Pit 4 の DOM と 掘削後の 露頭 全体の DOM で 得られた 地理座標の 比較

Control	露頭全体 DOM			Pit		Residual	R distance	D/\2			
Points	Y	Х	Z	Y	Х	Z	⊿Y	⊿x	⊿z	Tt distance	02
Point 11	18244.8496	-74184.8438	509.1555	18244.8320	-74184.8160	509.1630	0.0176	-0.0277	-0.0075	0.034	0.001
Point 4	18245.1445	-74186.2891	509.1476	18245.1430	-74186.2980	509.1500	0.0015	0.0089	-0.0024	0.009	0.000
Point 5	18243.2285	-74186.0078	509.2299	18243.2530	-74186.0180	509.2300	-0.0245	0.0102	-0.0001	0.027	0.001
										Residual	0.025

表 14 Pit 6の DOM と掘削後の露頭全体の DOM で得られた地理座標の比較

Control	露頭全体 DOM			Pit (6 DOM 位置座標	6		Residual	R distance	D/\2	
Points	Y	Х	Z	Y	Х	Z	⊿Y	⊿x	⊿z	TY distance	02
Point 1	18238.4648	-74190.8293	508.2696	18238.4746	-74190.8361	508.2720	-0.0097	0.0068	-0.0024	0.012	0.000
Point 2	18237.9004	-74192.7578	508.2399	18237.8825	-74192.7445	508.2290	0.0179	-0.0133	0.0109	0.025	0.001
Point 3	18236.3594	-74191.3516	507.8473	18236.3647	-74191.3567	507.8480	-0.0053	0.0052	-0.0007	0.007	0.000
										Residual	0.017

iv) 各ピットの記載

[Pit 1]

図 82 に Pit 1 のデジタル露頭モデルの西側からのキャプチャを示した。また対応する構造要素の分布を図 83 に示す。図 82 に示す Structure_Pit1-01~04 の箇所で、断層面や条線、周囲の構造を記載した(表 15)。

Pit 1 では、主断層面を挟んで上盤上部には岩村層群遠山層の砂岩、下部には後期白亜紀の花崗閃緑岩が露出している。両者の境界には灰色の断層ガウジ帯が形成されており、一部 褐色を呈する。断層面及び条線の方向データのステレオ投影図(三次元空間の方位データを 平面上に投影した図)を図 84 に示した。主断層面の走向は N14°E、傾斜は 40°E を示し(図 83、表 15: Pit1-01)、条線のレイク角は不明である。なお、主断層面上の点群を平面回帰 した面の方向は N53°E 63°SE で、残差の二乗平均は 3 cm である(図 83)。

また、下盤には東原層のシルト層が分布し、断層の影響により灰〜黒色を呈する厚さ1m 程度の断層ガウジ及び断層角礫帯が発達し、青灰色、黒色、白色などの異なる色調を呈する 断層ガウジを伴う。これらの破砕部分において走向がNS、傾斜は46°Eの剪断面が確認され た(図83、表15:Pit1-02)。この剪断面は下盤側の断層角礫内に発達し、条線は確認でき ていない。これらの破砕部には、見掛け正断層センスのP面方向に変形し、一部でR1面に よって切断されている(図85)。

上盤側で観察される分岐断層においては条線が確認できた。1つは花崗閃緑岩と岩村層群 遠山層の境界をなし、走向はN40°E、傾斜は32°Nを示す。淡灰色を呈する断層ガウジを少 量伴い、その表面に条線が不明瞭に認められ、レイク角は10°Wを示す(図83、表15:Pit-1-03)。もう1つは岩村層群遠山層内に発達し、暗灰色を呈する断層ガウジが形成され、一 部褐色を呈する。走向はN7°E、傾斜は44°E、条線のレイク角は14°Nを示す(図83、表15: Pit1-04)。

条線 No.	座標位 Y	置(平面直角座 X	標VII系) Z	走向	傾斜	レイク角	条線の変位センス	条線写真	定方位サンプル	採取日
Pit1-01	18282.04492	-174162.25781	511.788544	N14°E	40°E	不明	-	-	0	2022.2.8
Pit1-02	18281.71680	-174162.08594	511.414856	NS	46°E	不明			0	2022.2.8
Pit1-03	18280.85938	-174165.08594	512.235840	N40°E	32°N	10°W	_	0	0	2022.2.8
Pit1-04	18282.09961	-174163.15625	511.847229	N7°E	44°E	14°N	-	-	0	2022.2.8

表 15 Pit 1 取得データー覧

図 82 Pit 1のデジタル露頭モデルを西側よりキャプチャしたもの。 Structure_Pit1-1~4 は露頭における構造測定位置。黒線は断層部分。 N←

図 84 Pit 1 構造情報ステレオ投影図 (下半球等角投影,赤実線は主断層の測定値・赤点線は主断層点群の平面回帰)

図 85 Pit 1 見掛け正断層の複合面構造

[Pit 3]

Pit 3のデジタル露頭モデルの東壁面のキャプチャ画像を図 86 に、対応する Pit 3の東 壁面の構造要素の分布を図 87 にそれぞれ示す。また、Pit 3のデジタル露頭モデルの西壁 面のキャプチャ画像を図 88 に、対応する Pit 3の西壁面の構造要素の分布を図 89 に示す。

図 86 と図 87 に示した Pit3-E-01~06 の 6 箇所において、Pit 3 東壁面の断層面や条線、 周囲の構造の記載を行った(表 16)。図 88 と図 89 に示した Pit3-W-01~05 の 5 箇所におい て、Pit 3 西壁面の断層面や条線、周囲の構造の記載を行った(表 17)。

Pit 3 では、中~高角度の断層を境に、上盤には遠山層のシルト岩、下盤には東原層のシルト層が分布する(図 87 及び図 89)。主断層面は、東壁面下部では走向 N67°E~N72°E、傾斜 65°S~74°S だが、東壁面上部では走向 N32°E、傾斜 58°S となり湾曲する。西壁面では、 主断層面の走向は N52°E~N62°E、傾斜は 55°S~70°S を示し、東壁面と同様に上部に行くほ ど緩傾斜となる。断層面及び条線の方向データのステレオ投影図を東壁面は図 90a に、西 壁面は図 90b に示した。なお主断層面上の点群のうち、ピット下部の湾曲していない部分に ついて平面回帰した面の方向は N59°E、62°SE で、残差の二乗平均は 13 cm である。

主断層面に沿って幅5~15 cmの黒色(Pit3-E-01, Pit3-E-05)もしくは灰色の断層ガウジ(Pit3-E-02)、幅20~50 cmの断層角礫が発達する。東壁面のPit3-E-01付近では、周囲の幅5 cm程度の黒色ガウジ中に見掛け逆断層センスを示す複合面構造(図91a)、西壁面のPit3-W-01周囲の断層ガウジ中に不明瞭な見掛け逆断層センスを示すレンズ状挟在物の非対称変形構造が見られる。また主断層面は西壁面中央部のPit3-W-04付近において屈曲・分岐する様子が確認される(図92a)。一方、Pit3-W-02、Pit3-W-03ではP面やR1面といった複合面構造が見られ、見掛け正断層センスを示す(図92b)。

主断層の条線のレイク角は東壁面では 60°W (Pit3-E-01), 21°NE (Pit3-E-05), 24°E (Pit3-E-02)を示す (図 90a, 表 16)。西壁面では Pit3-W-01 では 76°E、 Pit3-W-02 では 55°E 及び 23°E の 2 方向が観察されている (図 90b, 表 17)。東壁面の主断層面上で見られた条線の写真を図 91b-c に示した。西壁面の主断層面上で見られた条線 (Pit3-W-02) の写真を

図 92c に示した。

下盤側のシルト層中にも複数の断層が見られ(Pit3-E-03, Pit3-E-04)、様々な方向の条線 が認められる(表 16)。

条線No	座標位置(平面直角座標VII系)			走向	化面余料	レイク角	条線の変位センス	条線写真	定方位サンプル	採取日
	Y	Х	Z							
Pit3-E-01	18254.99414	-74178.47656	509.002197	N72°E	65°S	60°W	-	0	0	2022.2.5
Pit3-E-02	18255.07031	-74178.97656	508.332245	N67°E	74°S	24°E	-	0	0	2022.2.5
Pit3-E-03	-	-	-	N3℃	73°E	15°N	-	0	-	2022.2.5
Pit3-E-04	-	-	-	N32°E	40°N	44°SW, 4°SW, 72°NE	-	-	0	2022.2.5
Pit3-E-05	-	-	-	N32°E	58°S	21°NE	-	0	0	2022.2.7
Pit3-E-06	18254.73242	-74179.3047	507.946472	N52°E	40°S	34°NE	-	-	O(E-05と同じ)	2022.2.7

表16 Pit 3 東壁面取得データー覧

表 17 Pit 3 西壁面取得データー覧

条線No.	座標位置	瘭VII系) マ	走向	傾斜	レイク角	条線の変位センス	条線写真	定方位サンプル	採取日		
	T	^	2								
Pit3-W-01	18250.25977	-74181.65625	508.694946	N52°E	70°SE	76°E	-	-	0	2022.2.5	
Pit3-W-02	18250.35156	-74181.65625	508.569122	N52°E	70°S	55°E, 23°E	-	0	0	2022.2.7	
Pit3-W-03	-	-	-	N62°E	55°S	不明	-	-	0	2022.2.7	
Pit3-W-04	-	-	-	N62°E	68°S	不明	-	-	0	2022.2.7	
Pit3-W-05	-	-	-	N22°E	40°S	82°S	-	0	0	2022.2.7	

図 86 Pit 3のデジタル露頭モデルの東壁面をキャプチャしたもの。 Pit3-E-1~6 は露頭における構造測定位置。

図 87 Pit 3の東壁面スケッチ。

図 88 Pit 3のデジタル露頭モデルの西壁面をキャプチャしたもの。 Pit3-W-1~5 は露頭における構造測定位置。

図 89 Pit 3 西壁面スケッチ

図 90 Pit 3 の構造情報ステレオ投影図(下半球等角投影,赤実線は主断層の測定値 赤点線は主断層点群の平面回帰)。(a)東壁面の測定結果。(b)西壁面の測定結果。

(b) Pit3-E-02 の条線。

(c) Pit3-E-05の条線。

図 92 Pit 3 西壁面に見られる構造 (a) Pit3-W-04 付近の屈曲・分岐する様子。(b) Pit3-W-03 付近の正断層センスの 複合面構造。(c) Pit3-W-02 の条線。

[Pit 4]

Pit 4のデジタル露頭モデルの東壁面のキャプチャ画像を図 93 に、対応する Pit 4の東 壁面の構造要素の分布を図 94 に示す。また、Pit 4のデジタル露頭モデルの南壁面のキャ プチャ画像を図 95 に、対応する Pit 4の南壁面の構造要素の分布を図 96 に示す。さらに、 Pit 4のデジタル露頭モデルの西壁面のキャプチャ画像を図 97 に、対応する Pit 4の西壁 面の構造要素の分布を図 98 に示した。

図 93 の Pit4-E-01~03 の箇所、図 95 の Pit4-S-01~04 の箇所、図 97 の Pit4-W-01~05 の箇所において Pit 4 の断層面や条線、周囲の構造の記載を行った(表 18:東壁面、表 19:南壁面、表 20:西壁面)。

Pit 4 では、中~高角度の断層を境に、上盤には遠山層のシルト岩及び礫岩、下盤には東 原層のシルト層が分布し、これらを崖錐堆積物が被覆している(図 94、図 96)。なお、西壁 面において、断層の一部は崖錐堆積物を切っているのが確認された(図 97、図 98)。上載地 層の崖錐堆積物は層相から3層程度に分けられる。主断層面の延長部の崖錐堆積物には、粒 子の配列や細粒化したゾーンが一部に認められ、壁面上での見かけの変位センスは北西側隆 起の正断層である。西壁面においては岩相界をなす断層面が壁面下部で傾斜 38°S (Pit4-W-05)と低角になっており、断層面も湾曲する。一方、最新活動面と思われる主断層面は、高 角度傾斜で上盤のシルト岩起源の断層角礫を切る(図 97、図 98)。

主断層面付近には色調や粒径の異なる断層ガウジからなる層状構造が認められ(図 99a、 Pit4-W-01)、主断層面に沿って幅7cm以下の断層ガウジが分布し、その周囲には幅数cmの 断層角礫が分布する。特に主断層面直近の幅1cm程度は特に細粒化が顕著である(図 99b、 Pit4-S-04)。断層ガウジには見掛け右横ずれ(図 99c、Pit4-S-03付近)と左横ずれ(図 99d、Pit4-S-02付近)の両方の構造が認められる。 また、壁面の中〜上部では主断層が上盤側に分岐しており、東壁面の Pit4-E-01~03 付近では、主断層と分岐断層の間には崖錐堆積物が流入している(図 93、図 94)。

断層面及び条線の方向データのステレオ投影図を東壁面は図 100a に、南壁面は図 100b に、西壁面は図 100c に示した。主断層面の方位測定値に限定すると、東壁面において走向 は N50°E、傾斜は 68°S (図 100a、表 18)、南壁面において走向は N54°E~N59°E、傾斜は 70° S~75°S (図 100b、表 19)、西壁面において走向は N54°E~N58°E、傾斜は 63°S~64°S (図 100c、表 20)を示す。なお、主断層面上の点群について平面回帰した面の方向は N57°E 70° SE で、残差の二乗平均は 5 cm である。

主断層の条線のレイク角は、東壁面の Pit4-E-03 で 82°E (表 18)、南壁面の Pit4-S-02 で 56°E (図 101a、表 19)、Pit4-S-03 で 80°E (図 101b、図 101c、表 19)、Pit4-S-04 で 80 °E を示す (図 101d、表 19)。また西壁面では Pit4-W-01 において 68°S を示す (図 101e、表 20)。

条線No.	座標位置(平面直角座標VII系)			走向	사접수의	レイク魚	冬線の恋情センス	久線官百	定方位サンプル	短雨口	
	Y	Х	Z	20	1990/94	UT7A		215/00A 7 🗩	2010000000		
Pit4-E-01	18245.77148	-74185.32031	509.802582	N54°E	74°S	55°W	-	0	0	2022.2.5	
Pit4-E-02	18245.77734	-74185.33594	509.740417	N65°E	63°S	70°W	-	-	0	2022.2.5	
Pit4-E-03	18245.74219	-74185.35156	509.614319	N 50°E	68°S	82°E	-	0	0	2022.2.5	

表 18 Pit 4 東壁面 取得データー覧

条線No.	座標位置(平面直角座標VII系)			走向	化百字汕	レイク角	冬線の変位センス	冬線写直	定方位サンプル	採取日	
	Y	Х	Z	×=1-3	12001	0.077	30A03242371	2014 222	2525777		
Pit4-S-01	18244.60938	-74186.52344	508.594604	N58°E	75° S	45°E	-	0	0	2022.2.5	
P it4-S-02	18244.83203	-74186.36719	508.617584	N59°E	70° S	56°E	-	0	0	2022.2.5	
P it4-S-03	18245.08398	-74186.14844	508.724854	N54°E	70° S	80°E	-	0	0	2022.2.7	
P it4-S-04	18245.65039	-74185.60938	509.113647	N58°E	75° S	80°E	-	0	0	2022.2.7	

表19 Pit 4 南壁面 取得データー覧

条線No.	座標位價 (平面直角座標VII系)			走向	傾斜	レイク角	条線の変位センス	条線写直	定方位サンプル	採取日
	Y	Х	Z	~	1200-1		214200-000-00 PT	1000 550		210.00
P it4-W-01	18244.06641	-74186.90625	508.596375	N58°E	63°S	68°E	-	0	0	2022.2.7
P it4-W-02	18243.95508	-74186.92969	508.750336	N54°E	64°S	不明	-	-	0	2022.2.7
P it4-W-03	18244.20117	-74186.88281	509.506531	N74°E	32°S	20°E	-	0	0	2022.2.8
P it4-W-04	18244.16602	-74186.89063	509.722656	N54°E	61°S	32°E	-	0	0	2022.2.8
P it4-W-05	18243.5293	-74186.50781	508.824585	N42°E	38°S	50°W	-	-	0	2022.2.8

表 20 Pit 4 西壁面 取得データー覧

図 93 Pit 4のデジタル露頭モデルの東壁面をキャプチャしたもの。 Pit4-E-01~03 は露頭における構造測定位置。

図 94 Pit 4 東壁面スケッチ

図 95 Pit 4のデジタル露頭モデルの南壁面をキャプチャしたもの。 Pit4-E-01~03及び Pit4-S-01~04 は露頭における構造測定位置。

図 96 Pit 4 南壁面スケッチ

図 97 Pit 4のデジタル露頭モデルの西壁面をキャプチャしたもの。 Pit4-W-01~05 は露頭における構造測定位置。

図 98 Pit 4 西壁面スケッチ

図 99 Pit 4 に見られる構造。

- (a) 西壁面の断層ガウジの層状構造 (Pit4-W-01)。
- (b) 南壁面、主断層近傍の幅 1cm 程度の細粒化した灰色断層ガウジ (Pit4-S-02, 04 付近)。
- (c) 南壁面、断層ガウジ中の見掛け右横ずれ構造 (Pit4-S-03 付近)。
- (d) 南壁面、断層ガウジ中の左横ずれ構造 (Pit4-S-02 付近)。

図 100 Pit 4 の構造情報ステレオ投影図 (下半球等角投影,赤実線は主断層の測定値。赤点線は主断層点群の平面回帰) (a) 東壁面の測定結果。(b) 南壁面の測定結果。(c) 西壁面の測定結果。

図 101 Pit 4 で観察された条線

- (a) Pit4-S-02 で下盤側に観察された条線。
- (b) Pit4-S-03 で上盤側に観察された条線。
- (c) Pit4-S-03 で下盤側に観察された条線。
- (d) Pit4-S-04 で上盤側に観察された条線。
- (e) Pit4-W-01 において上盤側に観察された条線。

[Pit 6]

Pit 6のデジタル露頭モデルの東壁面のキャプチャ画像を図 102 に、対応する Pit 6の東 壁面の構造要素の分布を図 103 に示す。また、Pit6のデジタル露頭モデルの南壁面のキャ プチャ画像を図 104 に、対応する Pit 6の南壁面の構造要素の分布を図 105 に示した。さら に、Pit 6のデジタル露頭モデルの西壁面のキャプチャ画像を図 106 に、対応する Pit 6の 西壁面の構造要素の分布を図 107 に示した。

図 102 の Pit6-E-01~06 の箇所、図 106 の Pit6-W-01~02 の箇所において Pit 6 の断層面 や条線、周囲の構造の記載を行った(表 21:東壁面、表 22:西壁面)。

Pit 6 では、中~高角度の断層を境に、上盤には遠山層のシルト岩及び砂礫岩、下盤には 東原層の粗~細粒砂層が分布し、一部にシルト層を伴う。下盤側の砂層中の層理面は、走向 N62°E~N82°E、傾斜 80~85°N を示す(図 103 の b₁、 b₂)。これらの地層は角礫に富み、淘汰 が悪い崖錐堆積物に覆われるが、一部は断層で切られている(図 103)。Pit 6 の東側壁面に おいて、主断層面付近の上盤には葉理を呈し淘汰の良い中~粗粒砂層が一部に認められる。 これらは崖錐堆積物より古い地層の可能性がある。これらの第四紀堆積物には、主断層面延 長部において見掛け約 15~20cm 北西側隆起の正断層変位が見られる(図 108)。第四紀堆積 物中での累積変位は認められない。一方、西側壁面では高角度北傾斜の砂層を崖錐堆積物が 覆う。断層付近には見掛け正断層センスの動きを示す複合面構造が形成されている(図 109)。

Pit 6 で見られた構造の方位を示すステレオ投影図を図 110 に示した。主断層面付近に幅 30 cm 以下の断層ガウジ、幅 2 m 以下の断層角礫が発達する(図 103、図 105、図 107)。主断 層の方位測定値は、東壁面において走向は N62°E、傾斜は 62°S、西壁面において走向は N72°E、傾斜は 70°S を示す。なお、主断層面上の点群について平面回帰した面の方向は N62°E、61°S で、残差の二乗平均は 2 cm である(図 110)。

主断層面の条線は、東側壁面の Pit6-E-04 において軟質な青灰色ガウジを切る断層面上 に2方向認められ、連続性が良い(図 111)。レイク角はそれぞれ 90°、60°E である(図 111 拡大図)。主断層以外の剪断面の方位のばらつきは大きく、条線のレイク角も西に沈下して いるものや東に沈下しているものが認められる。これらの条線の写真を図 112 に示した。

条線No.	座標位價(平面直角座標VII系)			走向	化百余礼	レイク角	冬線の変位センス	冬線互直	定方位サンプル	探取日
	Y	Х	Z	~	194011	01274	NOR CODE CODIN		2000000000	10460
Pit6-E-01	18238.14648	-74189.78126	506.870483	N62°E	85°S	不明	-	-	0	2022.2.8
Pit6-E-02	18238.23633	-74190.5625	506.988007	N42°E	85°S	20°E	-	0	0	2022.2.8
Pit6-E-03	-	-	-	N82°E	45°S	60° E	-	0	0	2022.2.8
Pit6-E-04	18238.44922	-74190.17969	507.220306	N62°E	62°S	90°, 60°E	-	0	o	2022.2.8
Pit6-E-05	-	-	-	N73°W	50°S	45° W	-	-	-	2022.2.8
Pit6-E-06	-	-	-	N82°E	42°S	70°W	-	-	-	2022.2.9

表 21 Pit 6 東壁面 取得データー覧

表 22 Pit 6 西壁面 取得データー覧

条線No.	座標位價(平面直角座標VII系)			走向	A-5451	レイク争	冬線の恋位センフ	久線百百	定方位サンプル。	2276日
	Y	Х	Z	AEIO)	1980-1	U T D M	衆派の変更ビンス	オベルフス	LET ML 5 2 2 70	과지
P it6-W-01	18237.06055	-74191.72156	507.113281	N22°E	60°E	80°E	-	0	0	2022.2.8
P it6-W-02	18236.71484	-74191.27344	506.918427	N72°E	70°S	不明	-	-	0	2022.2.8

図 102 Pit 6 のデジタル露頭モデルの東壁面をキャプチャしたもの。 Pit6-E-01~06 は露頭における構造測定位置。

図 103 Pit 6 東壁面スケッチ

図 104 Pit 6 のデジタル露頭モデルの南壁面をキャプチャしたもの。

図 105 Pit 6 南壁面最下部のスケッチ

図 106 Pit 6 のデジタル露頭モデルの西壁面をキャプチャしたもの。 Pit6-W-01~02 は露頭における構造測定位置。

図 107 Pit 6 西壁面スケッチ

図 108 Pit 6 の東壁面、主断層面直上の堆積物 堆積物の写真(左)とそのスケッチ(右)。

図 109 Pit 6 西壁面 見掛け正断層らしき複合面構造

図 110 Pit 6 の構造情報ステレオ投影図 (下半球等角投影,赤実線は主断層の測定値。赤点線は主断層点群の平面回帰)。

図111 Pit 6 で認められた条線 (Pit6-E-04)。右は拡大したもの。

図 112 Pit 6 主断層以外で認められた条線の写真。 (a) Pit6-E-02。(b) Pit6-E-03

v)考察

本調査で取得した断層と条線の全データのステレオ投影図を図 113 に示した。これを見ると断層面と条線の方向は一見大きくばらついている。次に主断層のみのステレオ投影図を図

114 に示した。これを見ると条線の方位は北東方向に沈下した方位、もしくは鉛直に近い方 位を示しばらつきは小さくなる。今回の調査の中では、断層面のずれの方向を決めていない が、地震調査研究推進本部地震調査委員会(2004)が評価している右横ずれ成分を伴う南東 側隆起の逆断層のずれによるものと大きく矛盾しない。ただし、方位のばらつきは90°近 い大きなものであり、このばらつきについては断層のずれの方向の決定とともに検討の必要 がある。

なお、最新すべり面の条線方位のばらつきについては、これまで他の活断層において地震時のすべり方向が変化し(例えば Otsubo et al., 2013)、この変化が断層沿いの震央との 位置関係が関係している可能性が指摘されている(Kearse et al., 2019, Kearse and Kaneko, 2020)。今後、最新すべり面上の条線を再確認し、条線方位の前後関係、連続性を 検討する必要がある。

一方、破砕帯に発達する非対称変形構造には見掛けの変位センスとして、正断層、逆断層、 右横ずれ、左横ずれの全ての運動方向を示す組織が確認された。このことに対する1つの説 明として、それぞれのずれの向きが異なる活動時期の痕跡を残している可能性が考えられる。 今回の調査結果を改めて見直す必要がある。

なお、今回の調査では3次元的な位置座標を決定することで、各ピットにおける断層面の 方位を決定している。この結果を改めて露頭全体の DOM にプロットした(図 115)。露頭内 で岩村層群遠山層の砂岩礫岩層または領家帯の花崗岩類と、瀬戸層群東原層(陶土層)の岩 相境界をなす恵那山断層は、おおむね北東-南西走向、南東傾斜を示す。しかし検討するべ き点が2点考えられる。1つは傾斜角が 60°から70°と比較的急傾斜であることである。こ れまで恵那山断層の傾斜は 30~50°の南東傾斜を示す逆断層とされてきた。しかし、純粋 な逆断層の場合は、このような急傾斜の断層については断層にかかる剪断応力が摩擦に対し 小さくなるため滑りにくい点である。もう1点はピットごとの断層同士の位置関係である。 図 116 に Pit 3~6 とそれぞれで観察された断層面の位置関係を示した。それぞれのピット で観察される断層面は互いに連続はしておらず、地表付近の断層が 10 m 程度のセグメント に分かれ、フラワー構造を形成しているようにも見える。

恵那山断層の最新活動時期、活動間隔の検討とともに、これらの断層が活動した際の運動 方向を検討する必要がある。

164

図 113 丸原鉱山における恵那山断層で観察された構造情報ステレオ投影図(下半球等角投影)。 (a). Pit 1、(b) Pit 3、(c) Pit 4、(d) Pit 6。

図 114 丸原鉱山における恵那山断層の主断層で得られた構造情報ステレオ投影図(下半球 等角投影)。

図 115 丸原鉱山における恵那山断層露頭の全体像。露頭全体の DOM に各ピットの位置と、 各ピットにおいて断層通過位置から求めた断層面をプロットした。

図 116 Pit 3~6 と各ピットにおける断層面の位置関係。

vi) 破壊伝播方向の検討

令和3年度に丸原鉱山(恵那市山岡町原地区)で実施した恵那山断層の断層運動方向を解 明するための断層条線調査に関して、取得データ確認及び追加データの取得を目的とした再 調査を実施した。その際にピット4の断層面から採取した試料で屈曲した条線を確認した (図 117)。Kearse et al. (2019)及び Kearse and Kaneko (2020)は、ニュージーランド で 2016年に発生したカイコウラ地震における調査結果と数値解析に基づき、断層のすべり 方向の屈曲が破壊伝播方向と関係していることを論じた。そのモデルに従うと、原地区にお ける最新の断層活動における破壊伝播方向は、北東から南西方向に向かったことが推定され る(図 118)。

図 117 原地区丸原鉱山の Pit 4 で観察された断層条線の屈曲

図 118 屈曲した条線から推定される恵那山断層における破壊伝播方向 基図には地震調査研究推進本部地震調査委員会(2004)を使用した。

6)構成断層及び地震規模の検討

恵那山-猿投山北断層帯を構成する活断層およびその断層帯を震源として発生する地震規 模について、a)断層長さの検討、b)断層活動時期、c)断層運動方向、d)断層面の傾斜角 の観点から検討を行なった。

a) 断層長さの検討

猿投山北断層の南方への分布については、長久手市と豊田市の境界周辺までが知られてお り、鈴木・他(2004)によって愛知高速交通リニモの公園西駅西方(長久手市前熊一ノ井)が 推定活断層の南限と図示されている。しかし、長久手市周辺より南西方向には、断層露頭が 地表に露出していることがないため、地下における分布の南限が明確ではない。豊田地域の 図幅(中島・他,2021)の範囲に、本断層の西南西方向を延長すると、断層の南には美濃帯 のジュラ紀付加体が残丘状に小高い山地の地形を作っており、地下構造の隆起が予想される (斎藤,2021)。また、この地域の重力異常からも、長久手市から豊田市、名古屋市の西南 西方向に重力異常の高まりが存在しており(村田・他,2020)、この方向に何らかの構造が 存在していることが予想される。以上のように、猿投山北断層は従来知られるよりも南方へ の分布が予想される。そこで、猿投山北断層の南限周辺の断層情報を整理するため、この地 域の地下地質情報であるボーリング資料やトレンチなどの調査報告を収集した。

断層露頭については、鈴木・他(2004)が示した猿投山北断層の南限以南では、長久手市前 熊一ノ井付近と愛知高速交通リニモの公園西駅付近で報告がある。長久手市前熊一ノ井付近 の県道力石名古屋線沿いでは、瀬戸層群矢田川累層日進部層のシルト層が破砕されて断層粘 土化した構造が観察された(豊田市,1999)。この露頭は断層活動による撓曲帯と想定され、 構造はN70°E、78°Nの走向傾斜を示す。愛知高速交通リニモの公園西駅付近で、リニモ建設 時に駅の東北東側へ約400 mにおいて愛知県がトレンチ調査を実施し、断層の精査と断層活 動が起こったときの構造物の耐震性評価を行った(昭和土木株式会社,2002)。断層は橋脚 の間で見つかり、瀬戸層群矢田川累層藤岡部層の砂礫層(上盤)と日進部層の砂泥互層(下 盤)が断層によって境されていることが明らかとなった。断層の走向はN50~57°E、傾斜は 62~80°Sであり、猿投山北断層の走向傾斜と調和的である。

地下構造から推定される断層について、既存のボーリング資料(経済企画庁総合開発局国

土調査課,1973;愛知県防災会議地震部会,1983)や国土地盤情報検索サイト KuniJiban (https://www.kunijiban.pwri.go.jp/jp/index.html: 2022年4月15日閲覧)を利用して 検討を行なった(図119)。豊田市八草町付近では、ボーリング資料から約50mの基盤上面 の変位が確認された(図120)。長久手市丸山では、ボーリング掘削と浅層反射法S波探査 により基盤上面に約60mの南東側隆起の変位があることが確認された(図121)。長久手市 前熊一ノ井付近ではボーリング資料(図119に示した5-84、5-85)から瀬戸層群の固結シ ルト層が約12m変位している可能性が示唆された(愛知県防災会議地震部会,1983)。名古 屋市天白区の国道302号線沿いの2本のボーリング資料において、標高約38mと43mに

「軟岩・風化岩」と記載された地層がみられる。この地層は、周囲に広く分布する瀬戸層群 の堆積岩ではなく、基盤岩を示唆している可能性がある。このボーリング位置の東北東2.5 kmの日進市香久山には、美濃帯のジュラ紀付加体の変成を受けた砂岩・泥岩・チャートが 残丘状に地表に現れており(斎藤, 2021)、この岩石が「軟岩・風化岩」として地下に分布 している可能性がある。この位置より北方及び南方には同様の地層はみられないが、猿投山 北断層の走向やジュラ紀付加体の残丘状に露出した分布を考慮すると、断層活動による隆起 が起こった可能性もある。

今回の調査では猿投山北断層の分布の南限延長を明らかにすることは出来なかったが、また、従来から南限付近とされている長久手市前熊一ノ井に近接する長久手市丸山において、約60mの変位が確認されたことは、この場所よりも南方にも変位が地下に分布することを示唆している。本断層の分布を知るためには50m以上のボーリング掘削や反射法地震波探査などの重力探査を用いた調査を実施する必要がある。

図 119 猿投山北断層の分布南限周辺において収集したボーリング、トレンチ、S 波探査など の文献情報の位置。

1:鈴木・他(2004),2:東郷・他(2004),3:経済企画庁総合開発局国土調査課(1973),4:愛知 県防災会議地震部会(1983),5:豊田市(1999),6:昭和土木株式会社(2002),7:長久手市区画 整理課公園西駅開発推進室・玉野総合コンサルタント株式会社(2015),8:斎藤(2021),9:中 島(2021),10: KuniJiban

図 120 豊田市八草町周辺におけるボーリング資料に基づく猿投山北断層の位置。 ボーリングの位置は図 118 を参照。

b) 断層活動時期に基づく検討

本プロジェクトでは、恵那山断層と猿投山北断層の断層活動時期を精度良く求めること により、両断層の活動時期が分離される可能性があるのではないかという仮説の下に調査を 進めた。しかし、本プロジェクトで実施したトレンチ調査の結果を踏まえても恵那山-猿投 山北断層帯全体が活動した可能性が残され、その時期は「約7,600年前以後、約7,200年前 以前」に限定される。

c) 断層運動方向に基づく検討

地震調査研究推進本部地震調査委員会(2009)の別冊2に示された恵那山-猿投山北断層 帯の震源断層モデルでは、屏風山・恵那山断層帯及び猿投山断層帯の長期評価(地震調査研 究推進本部地震調査委員会,2004)に基づき、猿投山北断層(西半部:横ずれ断層)と恵那 山断層(東半部:逆断層)のすべり角(レイク角)について、それぞれ、180°および90°と 設定されている。

今年度に実施した東白坂トレンチでは、断層破砕帯の複合面構造の解析から猿投山北断層の断層運動方向が10°~30°であることが確認された。また、昨年度に実施したピット調査における断層条線の観察結果から、恵那山断層の断層運動方向は20°前後であることが確認された。したがって、両断層の断層運動方向は同じセンスであり、両者が同時に活動する可能性が十分に考えられる。

d)断層面の傾斜角に基づく検討

サブテーマ2で実施した地質調査の結果に基づき、猿投山北断層、恵那山断層および屏風 山断層の断層面の傾斜角に関するデータを整理し、それらの平均値を求めた。猿投山北断層 については、既往のトレンチ調査(鈴木・野澤,2006)および本プロジェクトのトレンチ調 査において得られたデータに基づき、断層面の傾斜角について約70°南東傾斜という値を得 た(図122上段)。恵那山断層については、既存文献における記載および令和3年度に原地 区で実施した断層条線観察時の記録の平均値として、約60°南東傾斜という値を得た(図 122 中段)。屏風山断層については、既往文献に記載されている断層面の傾斜角の記載に基 づき、その平均が約55°になることを確認した(図122下段)。実際には、断層面の走向・ 傾斜は地点ごとに変わるものであり、上記の値は単なる平均像に過ぎないが、それぞれの活 断層の地下構造モデルや断層モデルを想定する際の参考となることが期待される。

地震調査研究推進本部地震調査委員会(2004)では、恵那山断層を「逆断層」、猿投山北 断層を「高角な横ずれ断層」と評価している。また、地震調査研究推進本部地震調査委員会 (2009)の震源断層モデルでは、恵那山断層の断層面の傾斜角を45°、猿投山北断層の断層

面の傾斜角を90°と設定している。両断層は地表トレースの平面形状は近接しているが、傾斜角が大きく異なるため、同時に活動する可能性が低いことが本プロジェクトを実施する前には想定された。しかし、断層露頭の情報のデータを整理した結果、断層面の傾斜角は近似していることが確認されたため、両断層が同時に活動する可能性は十分に考えられる。

図 122 既往データと本プロジェクトで得られたデータに基づく猿投山北断層(上段)、 恵那山断層(中段)および屏風山断層(下段)の断層面の傾斜角

(d) 結論ならびに今後の課題

恵那山ー猿投山北断層帯及びその周辺において、地形地質調査を実施し、断層活動履歴、断 層運動方向、平均変位速度、断層面の傾斜角、断層帯南西端の位置などを検討した。

断層活動履歴については、3地区において4孔のトレンチを掘削し、各地点における断層活

動時期に関する新しい情報を取得した。その結果、恵那山-猿投山北断層帯が1区間として活動した可能性は残されたままとなり、その時期は従来よりも限定された。新しく得られた活動 履歴に関する情報を踏まえて、同断層帯が1区間で活動する場合と2区間に別れて活動する場 合の最新活動時期と平均活動間隔を算出した。一方で、猿投山北断層における最新活動時期に 関する問題については、本プロジェクトでは解決することができなかった。

断層運動方向について恵那山断層の丸原鉱山で実施した断層破砕帯調査では、最新活動面に 残された断層条線の方向からすべり角が 20°程度であることが推定された。また、屈曲した断 層条線の観察結果から調査地(丸原鉱山)では断層活動時における破壊伝播方向が北東から南 西に向かったことが推定された。

阿木地区で実施したボーリング調査結果に基づく平均変位速度の検討については、火山灰分析結果に基づく地形面の年代(約 20 万年前)と地形面の変形量(約 4 m)から上下平均変位 速度を算出した後、断層条線の観察結果に基づいたすべり角の方向を考慮して、横ずれ平均変 位速度を 0.1-0.15 m/千年と見積もった。

断層面の傾斜角については、既往文献に記されている断層面の傾斜に関する情報のデータ 整理および本プロジェクトで得られたデータに基づいて、猿投山北断層、恵那山断層、屏風 山断層の断層面の平均的な傾斜角を、それぞれ約70°、約60°、約55°と算出した。

猿投山北断層の南西延長については、既存ボーリング資料、トレンチ調査情報、地下構造探 査資料の収集を行なった。これまでに猿投山北断層の南西端とされていた地点よりも先では活 断層の存在を示す明瞭な情報を確認することはできなかったが、ジュラ紀付加体の変成岩の分 布を指標とすると猿投山北断層延長で南東側が隆起した可能性がある。

(e) 引用文献

愛知県防災会議地震部会,愛知県の地質・地盤.資料集,その1 尾張部, 768p, 1983.

愛知県建築部・玉野総合コンサルタント(株),「平成8年度 瀬戸市南東部開発事業地質調 査報告書(2) 第2編 断層調査」. 60p, 1997.

|有井琢磨,岐阜県岩村町付近の断層地形.新地理,7,110-120,1958.|

Bemis, S.P., Micklethwaite, S., Turner, D., James, M.R., Akciz, S., Thiele, S.T., Bangash, H.A., Ground-based and UAV-Based photogrammetry: a multi-scale, highresolution mapping tool for structural geology and paleoseismology. J. Struct. Geol. 69, 163-178, 2014.

Bronk Ramsey, C., Bayesian analysis of radiocarbon dates, Radiocarbon 51(1), 337-360, 2009.

Fossen, H., Structural Geology. Cambridge University Press, Cambridge. 2010.

Furukawa, Y., Hernández, C., Multi-view Stereo: A Tutorial. Foundations and Trends® in Computer Graphics and Vision, 9, 1–148, 2015.

岐阜県,「平成 13 年度 地震関係基礎調査交付金 屛風山・恵那山断層帯に関する調査成果報 告書」, 118p, 2002.

地震調査研究推進本部地震調査委員会, 屏風山・恵那山断層帯及び猿投山断層帯の評価, 50p, 2004.

地震調査研究推進本部地震調査委員会,全国地震動予測地図,別冊2,352p,2009.

経済企画庁総合開発局国土調査課, 中部圏地下水(深井戸)資料台帳, 1597p, 1973.

香取拓馬・小林健太,斜交する断層帯会合域の断層幾何及び運動像の変遷-屏風山断層の例-(R14-P-7)(ポスターセッション)(演旨).日本地質学会第 123 年学術大会講演要旨, p.264, 2016.

香取拓馬・小林健太・安江健一・丹羽正和・小松哲也・細矢卓志・笹尾英嗣,岐阜県南東部 に位置する屏風山断層の破砕・変質履歴(SSS29-P06)(ポスターセッション)(演旨).日 本地球惑星科学連合大会予稿集(DVD),

SSS29-P06, 2015.

Kearse, J., Kaneko, Y., Little, T., Van Dissen, R., Curved slickenlines preserve direction of rupture propagation. Geology, https:// doi.org/10.1130/G46563.1, 2019.

- Kearse, J., Kaneko, Y., On fault geological fingerprint of earthquake rupture direction. J. Geophys. Res., 125, e2020JB019863. 2020.
- 町田 洋・新井房夫編,新編火山灰アトラス-日本列島とその周辺-.東京大学出版会,336p, 2003.
- 宮内崇裕・岡田篤正・杉戸信彦・鈴木康弘・吉田英嗣,1:25,000都市圏活断層図 屏風 山・恵那山断層帯及び猿投山断層帯とその周辺「恵那」.国土地理院技術資料 D1-No.758, 2017.
- 森山昭雄,木曽川・矢作川流域の地形と地殻変動.地理学評論(Ser.A),60,67-92,1987. 村田泰章・宮川歩夢・駒澤正夫・名和一成・大熊茂雄・岸本清行・石原丈実・志知龍一,名 古屋地域重力図(ブーゲー異常)1:200,000.重力図,no.34,産業技術総合研究所地質調 査総合センター,2020.
- 長久手市区画整理課公園西駅開発推進室・玉野総合コンサルタント株式会社,長久手市公園 西駅周辺土地区画整理事業 平成 26 年度 地質調査業務委託 (推定活断層調査)報告書. 長久手市,71p,2015.
- 中島 礼, 第9章 地質構造.豊田地域の地質,地域地質研究報告(5万分の1地質図幅). 産 総研地質調査総合センター, 64-74, 2021.
- 中島 礼・植木岳雪・山崎 徹・高木哲一・斎藤 眞,豊田地域の地質.地域地質研究報告 (5万分の1地質図幅).産総研地質調査総合センター,91p,2021.
- 中山勝博,岐阜県土岐市における瀬戸層群の堆積盆地.地団研専報:瀬戸内区の特性, no. 29, 119-129, 1985.
- 岡田篤正・廣内大助・松多信尚・宮内崇裕, 1:25,000 都市圏活断層図 屛風山・恵那山断 層帯及び猿投山断層帯とその周辺「中津川」. 国土地理院技術資料 D1-No.758, 2017.
- Otsubo, M., Shigematsu, N., Imanishi, K., Ando, R., Takahashi, M., Azuma, T., Temporal slip change based on curved slickenlines on fault scarps along Itozawa fault caused by 2011 Iwaki earthquake, northeast Japan. Tectonophysics, 608, 970-979, 2013.
- Petit, J.P., Criteria for the sense of movement on fault surfaces in brittle rocks. J. Struct. Geol., 9, 597-608, 1987.
- Reimer, P. J. Austin, W. E. N, Bard, E., Bayliss, A., Blackwell, P. G., Bronk Ramsey, C., Butzin, M., Cheng, H., Edwards, R. L., Friedrich, M., Grootes, P. M., Guilderson, T. P., Hajdas, I., Heaton, T. J., Hogg, A. G., Hughen, K. A., Kromer, B., Manning, S. W., Muscheler, R., Palmer, J. G., Pearson, C., van der Plicht, J., Reimer, R. W., Richards, D. A., Scott, E. M., Southon, J. R., Turney, C. S. M., Wacker, L., Adolphi, F., Büntgen, u., Capano, M., Fahrni, S. M., Fogtmann-Schulz, A., Friedrich, R., Köhler, P., Kudsk, S., Miyake, F., Olsen, J., Reinig, F., Sakamoto, M., Sookdeo, A. and Talamo, S., The IntCal20 Northern Hemisphere radiocarbon age calibration curve (0-55 cal kBP), Radiocarbon 62(4), 725-757, 2020.
- 斎藤 眞,第3章 美濃帯のジュラ紀付加体.豊田地域の地質,地域地質研究報告(5万分の1 地質図幅).産総研地質調査総合センター,12-16,2021.
- 昭和土木株式会社,東部丘陵切土面での地質変質部に関する考察.愛知県,60p,2002.
- Smith, V.C., Staff, R.A., Blockley, S.P.E., Bronk Ramsey, C., Nakagawa, T., Mark, D.F., Takemura, K., Danhara, T., and Suigetsu 2006 Project Members, Identification and correlation of visible tephras in the Lake Suigetsu SG06 sedimentary archive, Japan: chronostratigraphic markers for synchronising of east Asian/west Pacific palaeoclimatic records across the last 150ka. Quaternary Science Reviews, 67, 121-137, 2013.
- 鈴木康弘・野澤竜二郎, 猿投山北断層のトレンチ調査-横ずれ断層の活動認定と議論-. 月 刊地球, 号外, No. 54, 171-179, 2006.
- 鈴木康弘・岡田篤正・熊原康博・東郷正美, 1:25,000 都市圏活断層図「瀬戸」. 国土地理院 技術資料 D1-No. 435, 2004.

東郷正美・岡田篤正・澤 祥・鈴木康弘, 1:25,000 都市圏活断層図「豊田」. 国土地理院, 2004.

豊田市環境部自然保全課,豊田市の活断層と地震.108p, 1999.

- Triantafyllou, A., Watlet, A., Le Mou'elic, S., Camelbeeck, T., Civet, F., Kaufmann, O., Quinif,Y., Vandycke,S., 3-D digital outcrop model for analysis of brittle deformation and lithological mapping (Lorette cave, Belgium). J. Struct. Geol., 120, 55-66, 2019.
- 山崎 徹・野田 篤・尾崎正紀,明智地域の地質,地域地質研究報告(5万分の1地質図幅). 産総研地質調査総合センター,120p,2020.