3. 研究報告

3.1 変位履歴に基づく連動性評価のための地形地質調査

(1) 業務の内容

(a) 業務題目 変位履歴に基づく連動性評価のための地形地質調査

(b) 担当者

所属機関		役職	氏名
国立研究開発法人	産業技術総合研究所	主任研究員	近藤 久雄
一般財団法人	電力中央研究所	主任研究員	木村 治夫
学校法人	法政大学	准教授	杉戸 信彦

(c) 業務の目的

過去の地震時変位量を複数回復元する調査を複数地点で実施し、連動時と非連動時の変位 量がどのように変化したかを明らかにする。それらの変位履歴から連動確率を算出する評価 手法を考案する。

(d) 3 ヵ年の年次実施業務の要約

1) 平成 29 年度:

糸魚川-静岡構造線断層帯北部区間において変位履歴調査を実施し、過去の地震時 変位量を明らかにした。その結果と既存の情報を整理し、過去に周辺断層と連動した 地震イベントについて検討し、その発生頻度を明らかにした。

2) 平成 30 年度:

糸魚川-静岡構造線断層帯中北部区間の松本盆地東縁断層及び牛伏寺断層等にお いて変位履歴調査を実施し、過去の地震時変位量を明らかにした。また、北部区間の 補足調査を実施した。それらの結果と既存の情報を整理し、過去に周辺断層と連動し た地震イベントについて検討し、その発生頻度を明らかにした。

3) 令和元年度:

糸魚川-静岡構造線断層帯中南部区間の釜無山断層群において変位履歴調査を実施し、過去の地震時変位量を明らかにした。その結果と既存の情報を整理し、過去に 周辺断層と連動した地震イベントについて検討し、その発生頻度を明らかにした。さらに、北部区間から中南部区間までの変位履歴を整理して、過去の連動型地震の頻度 を明らかにし、連動型地震の発生確率を算出した。

- (2) 令和元年度の成果
 - (a) 業務の要約

糸魚川-静岡構造線断層帯(糸静断層帯)で最大規模の区間境界である諏訪湖周辺に おいて、中北部区間と中南部区間の連動イベントを検討するため、次の調査を実施した。 中北部区間の諏訪湖南岸断層群・岡谷湊地点において、トレンチ・ボーリング調査を実 施した。その結果、周辺では少なくとも 0.9mm/yr の上下変位速度であると推定した。中 南部区間の南端付近に位置する下蔦木断層・下蔦木地点において3Dトレンチ調査、ド ローンLiDAR 調査、ボーリング調査等を実施した。その結果、調査地点において約1万 年前以降に3回の活動が推定され、最近2回の活動に伴う地震時変位量はいずれも約3 mであった。最新活動は、北部~中北部区間の連動イベント(西暦 762 年もしくは 841 年の歴史地震)とは異なるイベントであり、中南部区間との連動イベントである可能性 がある。これらの連動履歴から算出される中南部~南部区間の連動間隔は約 3700~7200 年である可能性があり、ポアソン過程に基づく今後 30 年間の連動間隔は約 3700~7200 年である可能性があり、ポアソン過程に基づく今後 30 年間の連動確率を 0.4~0.8%と 試算した。また、既存の中北部区間および中南部区間における活動履歴や地震時変位量 を総合して、過去約1万年間に両区間が連動したイベントは約 3000~3200 年前の1回 であることを推定した。この場合、連動間隔は最小で 7000 年程度であり、ポアソン過程 に基づく今後 30 年間の連動確率を 0.4%以下と試算した。北部~中南部の3 区間に至る 連動イベントは、過去1万年間の変位履歴では検出されなかった。さらに、これまでの 変位履歴と既存の活動履歴をまとめ、断層帯で生じた連動型地震の連動範囲と地震時変 位量の推定、連動確率の試算結果を整理した。

- (b) 業務の成果
- 1) 諏訪湖南岸断層群・岡谷市湊地点におけるトレンチ・ボーリング調査
- a) 調査地点の概要

湊地点は、諏訪湖に流入する支流性小河川の扇状地面上に位置する(図1,2)。トレ ンチ掘削位置の数m南東側まで比高1m程度で諏訪湖側(北東側)が低い小崖地形が北 西-南東方向に連続しているが、トレンチ掘削位置より北西側には崖地形は認められな い。この小崖地形を境に扇状地の傾斜が不連続となっており、断層崖の可能性がある。 都市圏活断層図においては、湊地点付近には断層は図示されておらず、100mほど南西側 の山裾に活断層(位置やや不明確)及び活断層(伏在部)が図示されている。トレンチ とボーリングの掘削位置を図3、ボーリングによる地質断面図を図4に示す。

b) ボーリングの層序

湊地点のボーリングコアの地質は、上位から1層:人為的影響が見られる表土・盛土、 2層:腐植混じり砂礫層、3層:砂礫層(酸化色、大礫)、4層:砂礫層(還元色)、5 層:砂礫とシルトの互層、6層:砂礫層(巨礫、木片を含む)、7層:砂礫層(大礫)及 び基盤岩(凝灰角礫岩及び凝灰岩)に区分される(図3,4)。このうち、6層は5層中 に挟在するため、以下では6層を挟んで上位を5-1層、下位を5-2層とする。なお、6 層はMNT-3孔には分布しない。

1層は、すべてのボーリング孔で1~1.5m程度の層厚で確認された。一部にコンクリート片やビニール片が混入することから、人為的影響を受けた表土・盛土であると判断した。なお、本層下限付近で採取した試料(MNT-2-C1.03)からは、1666~1890 cal ADの年代が得られている。

2層は MNT-5 孔以外の4 孔において、15~60cm 程度の層厚で確認された。扇状地堆積物であると考えられるが、後述するようにトレンチ壁面での観察結果から人工層の可能

性もある。

3層は、すべてのボーリング孔で 60cm~1m程度の層厚で確認された。酸化色を呈す ることを特徴とし、淘汰が不良であり、大礫を多く含む。扇状地堆積物と考えられる。 4層は、すべてのボーリング孔で 25~80cm程度の層厚で確認された。細礫~中礫が多 く、不明瞭な堆積構造が見られる。扇状地堆積物と考えられる。

5 層は、前述の通り、MNT-3 孔を除いて6 層を挟んで 5-1 層と 5-2 層に細分される。 5-1 層は 1.8~2.7m 程度、5-2 層は 1.3~1.8m 程度の層厚で、合計で 3.2~4.3m 程度で ある。MNT-3 孔では 3.6m 程度である。細礫を主体としたシルト混じりの砂礫層と腐植質 な砂質シルトの互層であり、構成粒子に不明瞭ながら水平な堆積構造が確認される。氾 濫原堆積物もしくは湖成堆積物と考えられる。5-1 層上部で採取した試料(MNT-2-C3.04) からは、27711~27345 cal BP の年代が得られている。

6 層は MNT-3 孔以外の4 孔において、70cm~1.2m 程度の層厚で確認された。径 20cm を超える巨礫や径 10cm を超える木片を含む。土石流などの突発的なイベントなどに伴 う河川堆積物と考えられる。本層上部で採取した試料(MNT-2-C5.30)からは、29342~ 28720 cal BPの年代が得られている。

7層は MNT-3 孔以外の4 孔において、60cm~1.2m 程度の層厚で確認された。径 10cm を超える大礫を含み、淘汰も悪い。河川堆積物と考えられる。本層上部で採取した試料 (MNT-2-C7.36)からは、30900~30345 cal BPの年代が得られている。

基盤岩は、MNT-1、MNT-4、MNT-5 孔では、30cm~1m程度の凝灰角礫岩とその下位の凝 灰岩が確認されたのに対し、MNT-2、MNT-3 孔では凝灰角礫岩のみが確認された。これら の基盤岩類は山崎・他(1991)で示されている前期更新世の塩嶺累層と考えられる。

小崖地形の延長である MNT-4 孔と MNT-5 孔の間には顕著な地層のずれは確認されない。 しかし、MNT-2 孔において地層境界が約 30 度に傾斜し、腐植質シルトが約 45 度傾斜し ている構造などが見られた。6層及び7層が MNT-3 孔に分布しない理由として、MNT-3 孔が河道から外れていた可能性もあるが、断層変位による可能性も考えられる。基盤岩 の岩種も MNT-2 孔と MNT-5 孔の間で差異が見られる。以上のことから、MNT-2 孔と MNT-3 孔の間、もしくは、MNT-2 孔と MNT-5 孔の間に断層が存在する可能性が示唆される。

c)トレンチの層序

トレンチ壁面には腐植質砂混じりシルト/シルト混じり砂礫の互層状の堆積物のほか、 それを覆う砂礫を主体とした堆積物が露出した(図5~8)。堆積物は連続性や削剥の有 無、層相の相違により1層から5層に区分し、いくつかの地層についてはさらに細分し た。以下に湊トレンチにおける各地層区分について述べる。

1層:砂・礫混じりシルト(7.5YR4/6:褐色)

トレンチの全体にわたって、地表から1~1.5m 程度の層厚で分布する。細礫~20cm を超 える巨礫まで広く混在し、淘汰は不良である。礫種は安山岩及び凝灰岩を主体とし、一 部に砂岩などの堆積岩を含む。多量の木片や植物片を混入するほか、縦に植物根が伸び ている。NW3~NW9では、H3付近に径 10cm 程度の丸太が水平に並ぶ。コンクリート片や プラスチック片が混入する。人工層である。 2a 層: 腐植質砂礫(7.5YR3/3: 暗褐色)

SE1~SE7、SW、NW1~NW3 で、H3 付近に 10~20cm 程度の層厚で分布する。礫は亜角~亜 円礫を主体とする。平均礫径は 3.5cm、最大礫径は 8 cm、礫率は 10~30%程度であり、平 均的には 2b 層より低い。礫種は安山岩及び凝灰岩を主体とする。細礫を多く含み、一部 に中礫を伴い、淘汰は良い。基質は中~細粒砂を主体とし、シルトを含む。SW 面では、 中~細礫主体部と粗粒砂主体部が水平に複数層分布するようにみえる。一部に 3a 層由 来の偽礫を含む。木片や植物片を多く含むほか、植物根が縦に伸びる。

2b層:シルト混じり砂礫(10YR3/4:暗褐色)

SE9~SE11 に、深度 1.4m 付近から 30cm 程度の層厚で分布する。2a 層ほどではないが、 やや腐植質である。礫は亜角~亜円礫を主体とする。2a 層よりは、亜角礫程度の角ばっ た礫を含み、円磨度は低い。平均礫径は 11cm、最大礫径は 19cm である。礫率は 30%程度 で 2a 層より高い。礫種は安山岩及び凝灰岩を主体とする。基質は中~細粒砂を主体と し、シルトが混じる。不明瞭だが、水平なラミナが見られる。一部に植物根が縦に伸び る。

3a 層:砂混じりシルト質礫(2.5Y5/3:黄褐色)

トレンチの全体にわたって、深度 1.4m 付近から 1m 程度の層厚で分布する。礫は角~亜 角礫を主体とし、2b 層よりも円磨度は低い。巨~大礫を主体とし、淘汰は不良である。 礫率は 10~30%程度と 4a 層より低い。径が 20cm を超える礫も多く混在し、50cm を超え る礫も含まれる。礫種は安山岩を主体とし、凝灰岩を含む。基質はシルトを主体とし、 細粒砂が混じる。基質中には明瞭な堆積構造は見られない。多量の植物根が縦に伸び、 太いものでは径が 5 cm にも及ぶ。

3b 層: 腐植・砂混じりシルト質礫(2.5Y3/2:黒褐色)

NW5~NW7 及び SE7~SE9 に、深度 2.2m 付近から 10cm 程度の層厚で分布する。礫種は 3a 層と同様だが、礫径は最大で 10cm 程度と小さい。また、3a 層より基質にシルトを多く 含み、腐植質に富む。

4a 層:シルト混じり砂礫(2.5Y5/4:黄褐色)

トレンチの全体にわたって、H2 付近から 50cm 程度の層厚で分布する。礫は一部に角礫 を含むが、全体的には 3a 層より円磨度は高い。礫種は安山岩及び凝灰岩を主体とする。 礫率は 40%程度で、3a 層より高い。細礫~10cm 程度の大礫を含み、淘汰はやや不良。基 質は粗~中粒砂を主体とし、細粒砂やシルトが混じる。不明瞭な水平に近いラミナが見 られる。一部に、木片や植物片を含むが、2a 層以浅及び 5 層よりは少ない。同様に植物 根も混在するが、浅い部分よりは少なく、径が太いものも見られない。

4b 層:腐植・シルト混じり砂礫(2.5Y3/1:黒褐色)

SE3~SE5 に、H2 付近から 10cm 程度の層厚で分布する。礫種は 4a 層と同様だが、礫径が 小さく、礫率も低い。また、基質も 4a 層よりシルトを多く含み、腐植質に富む。

5層:腐植質砂混じりシルト/シルト混じり砂礫 互層

(シルト層:2.5Y5/4:黄褐色、砂礫層:2.5Y4/3:オリーブ褐色)

トレンチの全体にわたって、壁面最下部に分布する。南西側では底盤から1m 程度分布 するが、上位層との境界が北東に向かってなだらかに下がるため、NW6 及び SE6 より北 東側では 50cm ほどしか露出しない。腐植質砂混じりシルト層は、多量の木片や植物片を 含み、大きいものでは径が 10cm を超える。シルト混じり砂礫層は、中粒砂〜細礫からな る。各単層は側方への連続性は悪く、それぞれが漸移的であったり、レンズ状に分布が 途切れたりする。全体に緩やかな傾斜のラミナが発達しているが、NW3〜NW6 及び SE3〜 SE6 では急傾斜した褶曲や不明瞭な断層構造が顕著である。ラミナの傾斜は全体に 30 度 程度以下であるが、急傾斜部では 30 度を超え、最大で 60 度程度の傾斜を示す。

断層は複数条認められ、いずれも急傾斜したラミナを切り、南西側が北東側にのし上 げる逆断層的な変形を示す(図7,8)。変位量は断層に沿った方向で10数 cm 程度であ る。断層面はいずれも非常に不明瞭かつ不連続である。これらの断層は4a 層には変形を 及ぼしていない。

d) 湊地点および周辺の堆積構造と上下変位速度

湊地点ではボーリング調査により1層~7層、トレンチ調査により1層~5層が観察 された。このうち、5層はトレンチ壁面において、急傾斜した褶曲や不明瞭な断層構造 が観察された(図7,8)。この構造は北東-南西方向の圧縮による水平短縮により生じ たと考えられる。圧縮の原因については、地すべりの末端における圧縮や、地震動によ る流動変形などが考えられるが、いずれも根拠に乏しい。なお、この構造は上位の4層 に続かないことから、5層堆積期間中にイベント的に変形が生じたと考えられる。

5層は、MNT-2 孔の7層上部から得られている年代値から、およそ3万年前に堆積を 始めたと考えられる。山崎・他(1991)は、諏訪湖南岸で行ったボーリング結果から、 AT テフラ降灰以降2万年間は基本的に堆積環境が河川氾濫原もしくは湖水域であった ことを示しており、5層も同様の環境で形成されたと考えられる(図9)。先に述べたよ うに6層は、5層堆積期間内に生じた土石流などのイベントに伴う堆積物と考えられる ことから、6層上部で得られた年代試料は 5-1層最下部の年代とおおよそ同じ値を示し ていると考えられる。このことから、MNT-2 孔において、5-1 層上部の深度 3.04m から得 られた年代値(MNT-2-C3.04:27711~27345 cal BP)及び6層上部の深度5.30mから得 られた年代値(MNT-2-C5.30:29342~28720 cal BP)の中央値を用いると、5-1層の堆 積速度は 1.5mm/年と求められる。山崎・他(1991)では、諏訪湖南岸で掘削された 63B 孔(位置は図9を参照)から検出された AT、Aso-4、0n-Pm1 の各テフラの年代と出現深 度から、63B 孔における堆積速度を 1.5mm/年と算出しているが、Maruyama et al. (2019) で示されている AT と Aso-4 の最新の年代 (それぞれ 30078±96 cal BP、87.3~86.8ka) を用いて計算し直すと、63B 孔における堆積速度は 1.3mm/年となる。この値と比べると MNT-2 孔で算出された堆積速度はやや大きな値となるが、これは湊地点は盆地の縁辺に 位置するのに対し、63B 孔は盆地の中心部に近いといった堆積場所の差によるものと考 えられる。

湊地点の調査の結果、ボーリングでは活断層が存在する可能性が示唆されたが、トレンチ壁面には明瞭な断層は露出しなかった。ただし、MNT-2 孔と MNT-3 孔の間はトレンチを掘削していないため、この間に活断層が存在する可能性は否定できない。

湊地点の約1km南東の諏訪湖南西端で掘削された山崎・他(1991)の63A 孔では、河
成氾濫原堆積物中の深度33.4m(標高728.2m)からATテフラが検出されている。一方、
MNT-2 孔の深度7.36m(標高755.0m)からは、ATテフラとほぼ同じ30900-30345 cal BP

の年代が得られている。また、この直上から湖成堆積物または河成氾濫原堆積物が分布 する。AT テフラ降灰直後の両地点間に標高差が無かったと仮定すると、AT テフラ降灰以 降の約3万年間に26.8mの標高差が生じたことになり、両地点の間のほぼ湖岸に沿う位 置に平均変位速度0.89m/1000年(活動度B級)の活断層の存在が示唆される(図9)。

D、E:地下構造探査測線 D:松本 2002 (文献 11)、E:辰野一諏訪 2007 (文献 11)
⊕:活動区間の端点
断層の位置は文献 1、2、3、4に基づく.
基図は国土地理院発行数値地図 200000「高山」、「長野」、「飯田」、「甲府」を 使用.

図1 糸魚川-静岡構造線断層帯・中北部区間の位置 地震調査研究推進本部地震調査委員会(2015)による。黄色枠は図2の範囲。

図2 諏訪湖南岸断層群・湊地点の位置 基図は今泉・他(1999)を使用。

図3 諏訪湖南岸断層群・湊地点のトレンチ・ボーリング位置

図4 湊地点におけるボーリング地質断面図

図6 湊地点におけるトレンチ壁面のスケッチ

湊地点におけるトレンチ北西壁面の拡大スケッチ 図 7

図8 湊地点におけるトレンチ南東壁面の拡大スケッチ

5層:腐植質砂混じりシルト/ シルト混じり砂礫互層

木片・植物片・植物根

×① 走向·傾斜測定位置(断層)

×1 走向·傾斜測定位置

図 9 諏訪湖南岸断層群・湊地点周辺の累積上下変位量 上段の基図は都市圏活断層図を使用。右下の層序は山崎・他(1991)による。

2) 下蔦木断層・下蔦木地点の3Dトレンチ・ボーリング調査

a) 調査地点の概要

下蔦木地点は南東に流下する釜無川に沿った段丘面上に位置し、都市圏活断層図に おいて下蔦木断層が活断層として示されている地点である(図10)。北東から南西に 向かって流下する支流性の小河川が形成した扇状地上に、比高2~3m で北東側低 下の逆向き低断層崖が分布しており、複数の文献で断層崖と認められているほか、 小河川の屈曲から左横ずれが指摘されている。

ドローン測量はこれらの断層地形が認められる範囲において、国道を避ける形の測 量範囲とした。また、ボーリング調査は扇状地上に低崖が認められる地点において、 断層の両側で掘削した。

トレンチ調査地点は低崖が発達しておらず断層位置が不明確であるが、既往のトレ ンチで断層が確認されているバルジ地形と扇状地上の逆向き低崖を直線的に結んだ 延長上で3Dトレンチを掘削した。

b) ドローン LiDAR による精密地形計測

ドローン測量は図 11 に示す範囲とフライトプランにしたがって、複数回のフライトで 計測を行った。また、樹木が多い部分はフライトを多くし、データの精度向上を図った。 ドローン測量で得られた 0.1mDEM から作成した等高線図を図 12 に、陰影図を図 13 に示 す。これらの図において、扇状地上の逆向き低崖やバルジ地形が明瞭に表現されている ことが見て取れる。バルジ地形は周囲に樹木が多いため、空中写真では詳細な位置や形 状が把握できなかったが、ドローン測量では明瞭に表現されており、この手法が有効で あることが明らかになった。

c)下蔦木地点の3Dトレンチ調査

i)トレンチ掘削の概要

下蔦木地点においては、トレンチを2孔(Aトレンチ、Bトレンチ)、ピットを2孔(C1 ピット、C2ピット)掘削した。Aトレンチは推定される断層に直交する方向に、断層推 定位置をまたいで掘削し、トレンチSE面の一部は深掘りを行ったほか、断層平行方向に も掘削した(図14)。BトレンチはAトレンチより南東側の地質を確認するため、Aトレ ンチと平行方向に用地内で最大限南西方向に寄せた位置で掘削した。C1ピットはAトレ ンチ及びBトレンチが位置する水田から、農道を隔てて南東側の水田において掘削した。 C2ピットはAトレンチ及びBトレンチと同じ水田の南東側において掘削した。Aトレン チ壁面と拡張部分、断層平行部分のそれぞれについて写真の展開図を図15~17、スケッ チを図18~20に示す。また、Bトレンチ壁面写真の展開図を図21に、Bトレンチ壁面ス ケッチの展開図を図22にそれぞれ示す。

ii)トレンチの層序

トレンチ及びピット壁面には砂礫を主体とした堆積物とそれに挟在する腐植質シルト・ 砂主体の堆積物が露出した。堆積物は連続性や削剥の有無、層相の相違などにより区分 し、さらにそれぞれの層をいくつかに細分した。 (1) A トレンチ

Aトレンチでは、上位から0層:掘削残土、1層:盛土、2層:腐植質シルト、3層: 扇状地性礫層(上位:断層を覆う)、4層:扇状地性礫層(上位)、5層:腐植質シルト と砂礫の互層、6層:扇状地性礫層(下位)、7層:砂混じりシルト(フラッドローム)、 8層:シルト混じり砂礫(釜無川系)の9層に区分し、いくつかの地層については細分 した。

0層:掘削残土。トレンチ掘削時の残土である。NW2 面、SE2 面、NE2 面の上端部に分 布する。

1層:盛土(10YR5/8:黄褐色)。シルト混じり砂礫からなる。最大礫径は30cm、平均礫 径は13cmで、亜円~亜角礫からなる。礫種は安山岩・凝灰岩が主体。淘汰はやや不良。 礫率は30%程度。基質は中~細粒砂主体である。ところどころに腐植質シルト主体の部 分も見られる。トレンチの南東側及び南西側ほど層厚を増す。

2層:腐植質シルト(10YR2/3:黒褐色)。植物片・木片や植物根を多量に混入する。ま れに最大径15cmまでの亜角~亜円礫を混入する。SE1面のSE1付近には加工された木杭 らしき木片が露出した。トレンチの南東側及び南西側ほど層厚を増す。

3a 層:シルト混じり砂礫(10YR3/4:暗褐色)。最大礫径は 18cm、平均礫径は 7 cm で、 亜角~亜円礫からなる。礫率は 30%である。礫種は安山岩・凝灰岩が主体で、ごくまれ に砂岩・泥岩を混入する。淘汰は不良である。基質はシルト混じり砂である。径 40 cm の 巨礫を1つ混入する。

3b 層: 礫混じりシルト質砂(7.5YR3/3:暗褐色)。やや腐植質なシルト混じり砂からなり、全体に亜角~亜円礫を混入する。礫は 3a 層や 4a 層に似る。

4a 層:シルト混じり砂礫(7.5YR3/3:暗褐色)。最大礫径は25cm、平均礫径は6 cm で、 亜角~亜円礫からなる。礫率は20%程度である。礫種は安山岩・凝灰岩が主体で、ごく まれに砂岩・泥岩を混入する。淘汰は不良である。基質はやや腐植質なシルト混じり砂 である。ところどころに巨礫が集中する。

4b 層:砂礫(7.5YR4/3:褐色)。最大礫径は25cm、平均礫径は8cmで、亜角~亜円礫 からなる。礫率は40%程度である。淘汰は不良である。礫種は安山岩・凝灰岩が主体で、 ごくまれに砂岩・泥岩を混入する。基質は中粒砂主体である。

4c層:シルト混じり砂礫(7.5YR3/2:黒褐色)

最大礫径は 20cm、平均礫径は 6 cm で、亜角~亜円礫からなる。礫率は 20~30%である。 淘汰はやや不良である。礫種は安山岩・凝灰岩が主体で、ごくまれに砂岩・泥岩を混入 する。基質はシルト混じり砂であり。NW1~5 付近では下位の 5a 層との境界は不明瞭で 漸移的である。

4d 層: 礫混じり砂(7.5YR3/2: 黒褐色)。礫混じりの中粒砂~粗粒砂を主体とするほか、 一部は細礫主体である。全体にやや腐植質であるが、NW1 面の NW6~7 付近は特に腐植分 が多い。礫は 4a 層や 4e 層に似るが、礫径が平均 2 cm 程度と小さい。

4e 層:砂礫(7.5YR3/3:暗褐色)。最大礫径は40cm、平均礫径は5cmで、亜角~亜円 礫からなる。礫率は20~40%である。礫種は安山岩・凝灰岩が主体で、ごくまれに砂岩・ 泥岩を混入する。淘汰は不良である。基質は粗粒~中粒砂である。場所による礫率の変 化が大きい。5c 層との境界は明瞭で、NW13 付近では軽微に削り込んでいる。5c 層が分 布しない NW16 付近より北東側では6層と直に接するが、その境界は非常に不明瞭である。

5a層:礫混じり砂(10YR4/4:褐色)。粗粒砂を主体とし、径3cm程度以下の亜円~円 礫を含む。不明瞭なラミナが見られる。

5b 層:砂礫(10YR3/4:暗褐色)。最大礫径は30cm、平均礫径は3cmで、亜角~亜円礫 からなる。礫率は30~40%である。礫種は安山岩・凝灰岩が主体で、ごくまれに砂岩・泥 岩を混入する。淘汰はやや不良である。基質はやや腐植質な粗~中粒砂からなる。NW8~ 10 付近では下部が砂主体となる。

5c 層:腐植質シルト(2.5Y2/1:黒色)。腐植質シルトを主体とし、砂を多量に混入する。ところどころに最大径 30cmの亜角礫が点在する。木片・植物片及び植物根を多量に 混入する。

6層:砂礫(2.5Y3/2:黒褐色)。最大礫径は40cm、平均礫径は4cmで、亜角~亜円礫 からなる。礫率は20~40%である。礫種は安山岩・凝灰岩が主体で、ごくまれに砂岩・泥 岩を混入する。淘汰はやや不良である。基質は粗~中粒砂、一部では腐植質となる。と ころどころに木片・植物片が点在する。

7a 層: 礫・砂混じりシルト(10YR5/4:にぶい黄褐色)。礫・砂混じりシルトからなる。 上端部は腐植質である。7b 層に似るが、亜円~亜角礫を多量に混入する。礫種は安山岩・ 凝灰岩からなる。

7b層:砂混じりシルト(10YR5/4:にぶい黄褐色)。均質な砂混じりシルトからなり、塊状である。鉛直方向に伸びる植物根が全体に発達する。NW1 面の北東端では腐植質シルト主体部も見られる。ごくまれに礫を混入する。釜無川本流の影響がなくなった後のフラッドロームと考えられる。

7c層:礫・砂混じりシルト(10YR5/4:にぶい黄褐色)。礫・砂混じりシルトからなる。 7b層に似るが、亜円~亜角礫を多量に混入する。礫種は釜無川系の砂岩、泥岩、安山岩 からなる。

8層:シルト混じり砂礫(2.5Y5/3:黄褐色)。最大礫径は70cm、平均礫径は10cmで、 亜円~円礫からなる。礫率は40~50%である。釜無川系の砂岩、泥岩、安山岩、斑レイ 岩、花崗岩などの礫を含むことを特徴とする。淘汰は不良である。基質はシルト混じり 砂である。

(2) B トレンチ

Bトレンチでは B1 層~B13 層に区分した。B1 層が A トレンチの 1 層に、B2 層が A トレ ンチの 2 層に、B4~B7 層が A トレンチの 3 層及び 4 層に、B8 層が A トレンチの 5 層に、 B9~B12 層が A トレンチの 6 層に、B13 層が A トレンチの 8 層にそれぞれ概ね相当する。 なお、B3 層に相当する地層は、A トレンチには分布しない。また、A トレンチの 0 層及 び 7 層に相当する地層は、B トレンチには分布しない。

B1層:盛土(10YR5/8:黄褐色)。シルト混じり砂礫層。平均礫径は13cm、最大礫径は 30cm。亜円礫、一部亜角礫からなる。礫種は安山岩が主体。淘汰はやや不良。礫率は30% 程度。基質は中~細粒砂主体で、極細粒砂~シルトが混じる。植物根、植物片を含む。 トレンチの全体にわたって、地表から層厚1m程度で分布する。 B2 層:腐植質シルト(7.5YR3/2:黒褐色)。礫・砂混じりの腐植質シルトからなり、植物根、植物片、木片を多量に含む。B1 層との境界付近に全体的に B1 層由来と考えられる大~中礫が混入する。下限付近にも、一部に B4 層由来と考えられる中~細礫が混入する。トレンチの全体にわたって、B1 層の下限から層厚 1 ~ 1.4m 程度で分布する。下位層との境界が北東から南西にむかってなだらかに下がり、南西側ほど層厚を増す。

B3 層:シルト質砂礫(7.5YR2/2:黒褐色)。シルト質砂礫からなり、平均礫径は15cm、 最大礫径は27cm。礫径は40%程度。基質は粗~中粒砂が主体だが、B2 層との境界付近で は腐植質シルトが主体となる。亜円礫、一部亜角礫からなる。礫種は安山岩が主体であ る。巨~細礫まで混在し、淘汰は不良である。上限及び下限付近に巨礫が分布する。NW2、 SE2 より南西側及び SW 面に、H1 を挟んで層厚 0.5~1m 程度で分布する。NW 面よりも SE 面の方が、層厚が大きい。下位層を明瞭に削り込んでおり、SE 面と SW 面の境界付近で 最も下限が低くなる。

B4 層:シルト混じり砂礫(10YR3/3:暗褐色)。シルト混じり砂礫からなり、平均礫径は 10cm、最大礫径は 27cm。亜円礫を主体とし、一部亜角礫を伴う。礫種は安山岩を主体とし、淘汰はやや不良で、礫率は 20%程度である。基質は腐植質シルト主体で、細~極細粒砂が混じる。B2 層との境界に 1 ~ 5 cm 程度の礫が水平に並ぶ。植物根を多く含み、植物片を伴う。B12 層とは、礫率が低いことから区分される。NW5 及び SE5 より北東側に、B2 層の下位に最大層厚 80cm 程度で分布する。

B5 層:砂・礫混じり腐植質シルト層(7.5YR2/1:黒褐色)。腐植質シルトを主体とし、 細~極細粒砂が混じる。中~細礫が全体的に混入し、一部に大礫を含む。礫は亜円礫か らなり、礫種は安山岩主体である。植物根や植物片を含む。NW1~14、SE2~12、SW+1~ +2 に、最大層厚 70cm 程度で分布する。NW 面では NW14 付近で、SE 面では SE12 付近で、 B4 層内でレンズ状に収束する。

B6 層:シルト混じり砂礫(10YR3/2:黒褐色)。シルト混じり砂礫からなり、平均礫径 は3 cm、最大礫径は9 cm、亜円礫を主体とする。礫種は安山岩を主体とし、淘汰は普通、 礫率は40%程度である。礫は概ね水平にならぶ。基質は粗~細粒砂主体で、極細粒砂~ シルトが混じる。やや腐植質で、植物根や植物片を含む。B7 層とは礫率が高く、礫径が 小さいことで区分される。NW1~4 及び SW-1~+2 に、B5 層の下位に層厚 30 cm 程度で分 布する。NW 面では、NW4 付近で B5 層内にレンズ状に収束する。SW 面では、SW-1 付近で B3 層に削り込まれる。

B7 層:シルト混じり砂質礫(7.5YR3/2:黒褐色)。シルト混じりの砂質な礫からなり、 平均礫径は4.5cm、最大礫径は11cm、亜円礫を主体とし、亜角礫を伴う。礫種は安山岩 を主体とし、淘汰は普通で、礫率は30%程度である。礫は概ね水平に並ぶ。基質は粗~ 中粒砂が主体で、細粒砂~シルトが混じる。NW4 及び SE4 より南西側では、下限付近に 大礫が分布する。NW9、SE9 より南西側及び SW 面に、B5 層及び B6 層の下位に最大層厚 80cm 程度で分布する。

B8 層: 礫混じり腐植質シルト(7.5YR2/1: 黒色)。腐植質シルトを主体とし、中~極細 粒砂混じる。礫は亜円礫からなり、礫種は安山岩を主体とする。NW7~9 及び SE6~8 で は礫率が低いのに対し、それより南西側では礫率が高くなり、15cm を超える礫も混入す る。植物根や植物片を含む。NW5~8 及び SE4~9 に、B7 層の下位に層厚 20~40cm 程度で 分布するが NW8 付近では B7 層と指交関係にある。NW 面では、概ね層厚 20cm 程度で分布 する。SE 面では、層厚 20~40cm 程度で NW 面に比べて変化が大きい。

B9 層:シルト混じり砂礫(10YR3/4:暗褐色)。シルト混じり砂礫からなり、平均礫径 は3 cm、最大礫径は4.5 cm、亜円礫を主体とする。礫種は安山岩が主体で、淘汰は良く、 礫率は40%程度である。礫は概ね水平に並ぶ。基質は細粒砂が主体で、シルトが混じる。 やや腐植質で植物片を含む。B10 層とは礫径が小さく、礫率が高いことで区分される。 NW6~10 に、B4 層及び B8 層の下位に分布する。下限は不明であり、トレンチ内では最大 15 cm 程度が露出する。

B10 層:シルト混じり砂礫(10YR2/3:黒褐色)。シルト混じり砂礫からなり、平均礫径は 6.5cm、最大礫径は 12cm、亜円礫を主体とし、亜角礫を伴う。礫種は安山岩が主体で、 淘汰は普通、礫率は 30%程度である。基質は中~細粒砂主体で、シルトが混じる。やや 腐植質。植物根を含む。NW2~7、SE3~4 及び SE5~7 に、B7 層及び B8 層の下位に分布す る。下限は不明であり、トレンチ内では最大 25cm 程度が露出する。

B11 層:砂混じり腐植質シルト(10YR3/3:暗褐色)。腐植質シルトを主体とし、細~極細粒砂が混じる。植物根や植物片を含む。NW9~10 に、B9 層の下位に分布する。下限は不明であり、トレンチ内では最大 15cm 程度が露出する。

B12 層:シルト混じり砂礫(10YR2/2:黒褐色)。シルト混じり砂礫からなり、平均礫径 は8 cm、最大礫径は 30 cm、亜円礫を主体とし、亜角礫を伴う。礫種は安山岩が主体で、 淘汰はやや不良、礫率は 40%程度である。礫は概ね水平に並ぶ。基質は粗~中粒砂主体 で、細粒砂~シルトが混じる。植物根を含む。NW12~15 及び SE8~15 に、B4 層及び B5 層の下位に分布する。下限は不明であり、トレンチ内では最大 80 cm 程度が露出する。

B13 層:シルト・砂混じり礫(2.5Y4/3:オリーブ褐色)。シルト・砂の混じる礫からなり、平均礫径は5cm、最大礫径は20cm、亜円礫を主体とし、亜角礫を伴う。礫種は砂岩、斑レイ岩、安山岩などからなり、釜無川起源の堆積物と考えられる。淘汰はやや不良で、 礫率は30%程度である。基質は中~細粒砂主体で、シルトが混じる。NW9~10 では礫率が 10%程度に下がり、基質もシルト主体となる。NW9~12 及び SE11~12 に、NW 面では B4 層 の下位、SE 面では B12 層の下位に分布する。下限は不明であり、トレンチ内では NW 面 では最大 50cm 程度、SE 面では最大 40cm 程度が露出する。

iii)イベント層準の認定と年代、活動間隔

下蔦木 A トレンチでは堆積物を切断する複数の断層が露出した。断層と地層の切断・ 被覆関係から、以下の3つの活動と発生時期が推定される。

イベント1:4層を切り、3層に覆われる。4層から得られている年代のうち、最新 の年代として222~384 cal AD (1566~1728 cal BP:SMT-NW1-11)の年代が得られてい る。一方、3a 層から得られている年代のうち、最も古い年代として 398~539 cal AD (1411~1552 cal BP:SMT-NW1-10)の年代が得られている。従って、この断層の活動時 期は、222~539 cal AD (1411~1728 cal BP:約 1400~1700 年前)と推定される。この 年代は、近傍で実施された三浦・他 (2002)の最新活動時期と調和的である。一方、北 部区間と中北部区間の連動イベントと推定された西暦 762 年もしくは 841 年の歴史地震 には対応しない。また、南部区間の最新活動時期は約 1400~2500 年前とされており(例 えば、地震調査研究推進本部地震調査委員会,2015)、この年代と矛盾しない。すなわち、 下蔦木地点では最新活動に伴い南部区間と連動した可能性が示唆される。

イベント2:4e層を切り、4d層に覆われる。4e層からは年代が得られていないが、その下位の5層から得られている年代のうち、最新の年代として 8980~8649 cal BP (SMT-SE-C3)の年代が得られている。一方、4d層からは 5380~5449 cal BP (SMT-NW1-7)及び 4836~4615 cal BP (SMT-NW1-8)の年代が得られている。SMT-NW1-7 は堆積物中の木 片を測定した値であるが、SMT-NW1-8 はバルクで測定した値である。そのため、ここでは SMT-NW1-7 の年代値を採用すると、活動時期は 8649~5380 cal BP (約 5400~8600 年前)と推定される。この年代は、既報の調査による中南部区間の約 6000~8000 年前の活動5 (地震調査研究推進本部地震調査委員会, 2015)と調和的である。一方、南部区間の活動時期は最新活動に先行する活動 2 が約 7200~8400 年前と推定されており(地震調査研究推進本部地震調査委員会, 2015)、この年代とも矛盾しない。

イベント3:6層を切り、5層に覆われる。6層からは年代が得られていないが、その下位の7層からは19195~18895 cal BP (SMT-SE-C1)の年代が得られている。一方、5層下部からは11075~10659 cal BP (SMT-NW1-18)の年代が得られている。従って、この断層の活動時期は、18895~11075 cal BP (約11000~19000年前)と推定される。

各活動時期の範囲を用いて活動間隔を算出すると、活動1と2では3700~7200年、活 動2と3では2400~13600年となる。また、活動1から3の年代幅をイベント回数-1で 除した場合、約4700~8800年となる。これらは誤差が大きいが、糸静断層帯北部区間、 中北部区間、及び中南部区間の平均活動間隔と比して有意に長く、南部区間よりも短い。 これは、調査地点が全てのイベントを記録していなく、北東側を並走するトレースがよ り高頻度で活動したイベントが存在する可能性を示唆する。その場合、本地点で記録さ れたイベントは連動イベントのみである可能性もある。

iv) 横ずれ変位量の計測

下蔦木 A トレンチでは、断層に斜交して流下した 2 つのチャネル堆積物を基に左横ず れ量を計測可能である。それらは新しいものから 4b 層、5 層であり、それぞれ最新活動 1回分と 2回分を記録している。各チャネル堆積物と横ずれ量の計測結果を図 23 と図 24 にそれぞれ示す。

最新活動に伴う横ずれ量はチャネル堆積物 4b 層の西縁を基準に 3.0m と計測した。東 縁も横ずれ変位を生じているが、古流向が湾曲し相対的に不明瞭なため、ここでは西縁 を変位基準とした変位量を最新活動に伴う横ずれ量とみなした。この横ずれ変位量は、 地表で計測できる流路の横ずれ量が約3mであることと調和的である。

最近2回分の横ずれ量を記録する5層は5a~5c層からなり、薄く幅広いチャネルを充 填する一連の堆積物と判断し、その西縁を変位基準とした。西縁はAトレンチ壁面に広 範囲に露出するが、断層帯近傍では横ずれ変位により分布が見られない場所がある。横 ずれ量の計測にあたっては、層厚が0になる西端だけでなく、流心に向かって厚くなる 分布を等層厚線を描いて検討した。層厚が0cm、10cm、20cmの等層厚線を基準に6.2± 0.2mの横ずれ量を本地点の2回分の横ずれ量と判断した。 v)下蔦木断層における変位履歴と連動確率の試算

下蔦木地点における 3D トレンチ調査の結果、最近活動と1 つ前のイベントに伴う横ず れ変位量はそれぞれ約 3 mで同程度であったと推定された。活動時期からみて、いずれ のイベントも南部区間の活動時期と調和的である。さらに、本地点は下蔦木断層及び中 南部区間の南東末端付近に位置し、3 mの地震時変位が中南部区間の単独イベントとし て生じたとは考えにくい。したがって、下蔦木 A トレンチで検出された 2 回の活動は南 部区間ないし下蔦木断層より南の断層区間と連動したイベントを記録している可能性 が高い。中南部区間の平均活動間隔は約 1300~1500 年であり(地震調査研究推進本部地 震調査委員会, 2015)、より高頻度で活動していることから、4~6回に一回の頻度で中 南部区間と南部区間が連動した可能性がある。下蔦木地点の活動1と2の発生間隔であ る約 3700~7200 年を連動間隔とみなせば、ポアソン過程に基づく今後 30 年以内の連動 確率は 0.4~0.8%と試算される。

図 10 下蔦木断層と調査位置 基図は国土地理院発行の都市圏活断層図(澤・他,1998)を使用。

図 11 下蔦木断層周辺のドローン LiDAR 実施範囲 基図は地理院地図を使用。黒線はフライト位置。

図 12 下蔦木断層周辺のドローン LiDAR による等高線図 等高線間隔は 0.5m。

図 13 下蔦木断層周辺のドローン LiDAR によるモノクロ陰影図 DEM のグリッド間隔は 0.1mメッシュ。

図 14 下蔦木地点の測量図と3Dトレンチ掘削位置

図 15 下蔦木地点のAトレンチの写真

図 16 下蔦木地点のAトレンチ拡張部分の写真

図17 下蔦木地点のAトレンチ断層平行部分の写真

図18 下蔦木地点のAトレンチのスケッチ

図 20 下蔦木地点のAトレンチ断層平行部分のスケッチ

図 21 下蔦木地点 Bトレンチの写真

図 22 下蔦木地点Bトレンチのスケッチ

図 23 最新活動に伴う横ずれ量の推定

壁面に露出したチャネル堆積物の分布形状(青色)をもとに推定。

図 24 最近2回の活動に伴う横ずれ量の推定 壁面に露出したチャネル堆積物の層厚分布(黄緑色:数値は cm)をもとに推定。

3) 糸静断層帯全体の連動イベントの整理

本事業と従来の調査研究成果を総合して、糸魚川-静岡構造線断層帯で生じた連動型 地震の発生時期、活動範囲、地震時変位量を整理した。既往の活動時期や地震時変位量は 地震調査研究推進本部地震調査委員会(2015)でまとめられた結果を中心に、個別の調査 地点については文部科学省研究開発局・国土交通省国土地理院・東京大学地震研究所 (2010)を参考にした。各地点間のイベント対比では、地震調査研究推進本部地震調査委員 会(2015)と同様に、単独トレース上で複数回の活動履歴が推定された地点を重視した。 以下では、最も詳細な連動履歴が明らかになった北部区間との連動組み合わせを中心に 北から南へ新しいイベントから整理する。

a) 北部区間と中北部区間の連動イベント

北部区間の神城断層から中北部区間の岡谷断層に至る区間では、最新活動時期が約1200 年前頃もしくは6世紀以降と推定された(図25)。この連動イベントは西暦762年もしく は841年の歴史地震に対比されると考えられる。近藤・他(2014)で指摘したように、被 害記録の詳細さや分布域から判断して、西暦762年の地震が北部区間から中北部区間を 活動範囲とする連動型地震であった可能性が高い。このイベントに伴い、神城断層・木崎 湖南方地点で8.5~10.2mの実変位(近藤,2018)、松本盆地東縁断層北部・池田町会染 地点で5.0mの実変位(近藤・木村,2017)、松本盆地東縁断層南部・豊科高家地点で7.1±3.6 m(近藤・他,2019)、島内地点で6.2~6.9m(近藤・他,2006)、牛伏寺断層・並柳地 点で7.5±1.5m(奥村・他,1994)、牛伏川地点で6m程度が計測されている。この際の 活動範囲は北部区間と中北部区間をあわせた、長さ約120kmの範囲が活動したと考えら れる。この場合の地震規模はMj8.0もしくはそれ以上である。

さらに先行する北部区間と中北部区間の連動イベントの候補は、神城断層・木崎湖南方 地点で推定された約4300~4500年前のイベントである。ただし、このイベント発生年代 に相当するイベントは牛伏寺断層では検出されていない。調査地点における地層の欠落 やイベント年代推定の誤差によるものか、このイベントでは牛伏寺断層が連動しなかっ たかのいずれかの可能性が考えられる。地震時変位量からみれば、神城断層・木崎湖南方 地点における本イベントに伴う地震時変位量は8.5m(上下変位2.9mを傾斜20°で換 算)であり、約90kmの地震断層長に相当する。一方、北部区間と中北部区間のうち、牛 伏寺断層以南を除いた断層区間(北部区間から松本盆地東縁断層南部まで)は長さ約65km に過ぎない。そのため、地震時変位量と地震断層長のスケーリング則(松田・他,1980) に基づけば、現時点ではこのイベントに伴い牛伏寺断層以南を含む中北部区間全体が連 動したと考えることが合理的である。よって、北部区間と中北部区間の連動型地震が約 4300~4500年前に生じた可能性が高い。この場合の連動範囲は約120kmの区間となり、 地震規模はMj8.0もしくはそれ以上である。なお、北部区間から松本盆地東縁断層南部 までが連動範囲の場合は長さ約65kmとなり、地震規模はMj7.9程度と推定される。

これらを踏まえて、北部区間と中北部区間の連動型地震の発生間隔は、最新活動を西暦 762年とした場合、約3100~3300年となる。この連動間隔とポアソン過程に基づく今後 30年間の連動型地震の発生確率は0.9~1.0%と試算される。

b) 中北部区間と中南部区間の連動イベント

両区間が連動したイベントは、諏訪湖周辺の活動時期を整理した結果、約 3100~3200 年前に推定される(図 26)。北端は少なくとも神城断層・木崎湖南方地点以南であり、同 地点より北方のトレンチ調査等ではこのイベント相当が検出されていない(例えば、地震 調査研究推進本部地震調査委員会, 2015)。神城断層・木崎湖南方地点では、このイベン トに伴う地震時変位量は上下変位 0.4m と小さく地震断層末端付近の変位、もしくは地震 断層近傍の地表で生じた受動的変位と示唆される。よって、この連動イベントの北端は、 北部区間の神城断層全体は含まず、松本盆地東縁断層北部の北端までと判断できる。ま た、南端についても正確な位置は特定できないが、中南部区間の活動3(約 2900~3200 年前:地震調査研究推進本部地震調査委員会, 2015)に相当するため、中南部区間全体が 活動したと考えられる。本事業による下蔦木地点の 3D トレンチでは、上述のように約 2900~3200年前イベントは検出されていないが、北西約 400mに位置する近藤・他(2005) によるトレンチ調査では、約 2000~3300年前のイベント II が識別されており大きな矛 盾はない。よって、この連動イベントでは、松本盆地東縁断層北部から中北部区間、及び 中南部区間に至る区間で生じたと考えられる。なお、現時点では、この連動イベントに伴 う地震時変位量は計測されていない。

以上から、松本盆地東縁断層北部から中北部区間と中南部区間に至る長さは約78kmとなり、その連動型地震の規模は Mj8.0 程度もしくはそれ以上と推定される。本イベントは約3100~3200年前に生じたと推定され、現時点では過去約1万年間で1回のみ検出されている。仮に先行する連動イベントが最も新しい時期の約1万年前にも生じていた場合には、連動間隔は最小で7000年程度となり、ポアソン過程に基づく今後30年以内の 連動確率は最大で0.4%と試算される。

c) 中南部区間と南部区間の連動イベント

中南部区間と南部区間では詳細な変位履歴が限られているが、現時点で得られている データを基に連動イベントの抽出を試みた。中南部区間の南東端付近に位置する下蔦木 地点の 3D トレンチの結果、最新活動と先行する活動が南部区間との連動イベントである 可能性が得られた。既述のように、最新活動は約 1400~1700 年前に生じたと推定され、 南部区間の最新活動時期が約 1400~2500 年前であることと矛盾しない。さらに、本事業 による最新活動に伴う横ずれ量が約 3mと推定されるため、少なくとも下蔦木断層と南部 区間の一部が連動した可能性が指摘できる。ただし、その連動範囲の詳細は現時点では明 らかではない。例えば、中南部区間の茅野断層では対応するイベントが検出されておら ず、複数の断層トレースで構成される釜無山断層群においても、最新活動時期は約 900~ 1300 年前とされ不調和である。よって、現時点では少なくとも下蔦木断層と南部区間の 一部を含む連動イベントが約 1400~1700 年前に生じたと言え、地震時変位量が約 3 mで あることから少なくとも約 30km 以上の断層区間が連動したと考えられる。また、同様に 連動範囲は不明であるが、活動時期と地震時変位量からみて、約 5400~8600 年前に連動 イベントが生じた可能性がある。今後、より詳細な変位履歴について特に南部区間におい ても明らかにする必要がある。

以上から、少なくとも下蔦木断層から南部区間を含む範囲で生じた連動イベントが約 1400~1700年前と約5400~8600年前に生じた可能性がある。この場合、暫定的な連動間 隔は約 3700~7200 年となり、ポアソン過程に基づく今後 30 年以内の連動確率は 0.4~ 0.8%と試算される。

d) 糸静断層帯全区間(北部~南部区間)の連動イベント

本事業により特定した連動型イベントの時空間分布を図 27 に示した。これまでに実施 された調査研究では、本事業による成果を含めて、断層帯全体が連動したと判断できる連 動型地震イベントは検出されていない。活断層の連動性評価において、断層不連続や離間 距離が地震時の応力変化や連動可能性に影響することが知られている(例えば、 Wesnousky, 1988;松田, 1990;Wesnousky, 2008)。この観点で見ると、糸静断層帯で最 も大きな断層不連続は中北部区間と中南部区間の境界であり、この諏訪湖周辺の区間境 界を超える連動型イベントだけが断層帯全体の連動型イベントの候補となり得る。よっ て、現時点では過去約1万年間の中で約2900~3200年前に生じた連動イベントのみが候 補となる。しかし、実際には、本イベントに対比可能なイベントは北部区間の神城断層で は検出されておらず、松本盆地東縁北部のみで認められている。また、南部区間でもこの 連動イベント時期に対応するイベントは検出されていなく、上述のように連動範囲は限 定的である。したがって、糸静断層帯全体が連動するイベントは約1万年間には検出され ておらず、約1万年に1回よりも長い連動間隔と判断できる。この場合、ポアソン過程に 基づく今後30年以内の糸静断層帯全体の連動確率は0.3%未満と試算される。

以上のように、本事業ではこれまで不明とされてきた連動確率を新たに算出するため、 変位履歴に基づく連動型地震の発生確率の算出手法を整理して構築した。ここでは評価 手法を整理して構築することを主眼としたため、活動区間ごとのデータ粗密や信頼度は 考慮できていないが、本評価手法を適用していくためには、より多くの地点で可能な限り 多数回の変位履歴を明らかにする必要がある。例えば、逆断層区間である北部区間の神城 断層では7回のうち2回を顕著な連動型イベントとして抽出できたものの、横ずれ断層 区間である中北部~中南部区間では過去の地震時変位量を復元できた回数に限りがある。 そのため、特に横ずれ断層帯では地震時変位量を復元する調査手法のさらなる改良や、区 間境界付近で精緻な活動時期を集中的に取得する調査戦略などを検討していく必要があ る。さらに、確率評価手法においては、神城断層でみられた時間的クラスタリングに対し て、ポアソン過程による評価をせざるを得ないのが現状である。今後、多峰性分布を考慮 した更新過程に基づく評価手法についても、引き続き検討していく必要がある。

(c) 結論ならびに今後の課題

最終年度にあたる令和元年度は、中北部区間と中南部区間の連動イベントを検討する ため、次の地形地質調査を実施した。中北部区間の諏訪湖南岸断層群・岡谷湊地点におい て、トレンチ・ボーリング調査を実施し、周辺では少なくとも0.9mm/yrの上下変位速度 であると推定した。中南部区間の南端付近に位置する下蔦木断層・下蔦木地点において3 Dトレンチ調査、ドローンLiDAR 調査、ボーリング調査等を実施した。その結果、調査地 点において約1万年前以降に3回の活動が推定され、最近2回の活動に伴う地震時変位 量はいずれも約3mであると推定した。最新活動は約1400~1700年前に生じたと推定さ れ、北部~中北部区間の連動イベント(西暦 762 年もしくは 841 年の歴史地震)とは異 なる時期のイベントである。一方、この年代は中南部及び南部区間の最新イベント発生時 期と調和的であり、下蔦木地点の最新活動に伴う地震時変位量が約3mと推定されたこ とを加味すれば、両者の連動イベントである可能性がある。また、それ以前のイベントで は、約5400~8600年前に中南部区間と南部区間の連動イベントが生じた可能性がある。 これらの連動履歴から算出される中南部~南部区間の連動間隔は約3700~7200年である 可能性があり、ポアソン過程に基づく今後30年間の連動確率を0.4~0.8%と試算した。

また、既存の中北部区間および中南部区間における活動履歴や地震時変位量を総合して、過去約1万年間に両区間が連動したイベントは約3000~3200年前の1回であることを推定した。この場合、連動間隔は最小で7000年程度であり、ポアソン過程に基づく今後30年間の連動確率を0.4%以下と試算した。

さらに、北部~中南部の3区間に至る連動イベントは、既往の過去1万年間の変位履 歴では検出されなかった。さらに、これまでの変位履歴と既存の活動履歴をまとめ、断層 帯で生じた連動型地震の連動範囲と地震時変位量の推定、連動確率の試算結果を整理し た。

以上から、過去の活動時期に地震時変位量を加味した変位履歴、既往の地震時変位量 と地震断層長のスケーリング則に基づき、複数の活動区間による連動確率をポアソン過 程による試算として提示した。確率評価手法は従前の長期評価で実施された方法と同様 であるが、さらに稠密かつ多数回の変位履歴を明らかにすることによって、より適切な連 動型地震の発生確率を算出可能になるものと期待される。特に、横ずれ断層区間では複数 回の地震時変位量を復元することが相対的に困難であり、今後、調査手法の改良を進める 必要がある。さらに、上述のように、時間的クラスタリングがみられる場合にも、ポアソ ン過程に依らない更新過程に基づく評価手法も引き続き検討していく必要がある。

謝辞:野外調査の実施にあたり長野県危機管理防災課、岡谷市危機管理室、富士見町 の各位にご協力を頂きました。掘削調査地の地権者及び耕作者の方々には、調査の趣旨を ご理解頂き、土地の使用と掘削をご快諾頂きました。下蔦木トレンチでは広島大・奥村晃 史氏、鶴岡高専・澤祥氏に壁面の解釈について有益な議論を頂きました。皆様に記して御 礼申し上げます。

(d) 引用文献

- 今泉俊文・東郷正美・澤 祥・池田安隆・松多信尚,1:25,000都市圏活断層図「諏訪」,国 土地理院,1999.
- 地震調査研究推進本部地震調査委員会,「糸魚川ー静岡構造線断層帯の長期評価(第二版)」, 60p, 2015.
- Katsube, A., H. Kondo, and H. Kurosawa, Surface rupturing earthquakes repeated in the 300 years along the ISTL active fault system, central Japan, Geophys. Res. Lett., 44, doi:10.1002/2017GL073746, 2017.

近藤久雄・奥村晃史・杉下一郎・中田 高,糸魚川-静岡構造線断層系・下蔦木断層の活動

履歴と平均変位速度の再検討.活断層研究, 25, 75-84, 2005.

近藤久雄・遠田晋次・奥村晃史・高田圭太,糸魚川-静岡構造線活断層系・松本盆地東縁 断層南部に沿う左横ずれ変位地形,地学雑誌,115,208-220,2006.

- 近藤久雄・谷口薫・杉戸信彦,糸魚川-静岡構造線活断層系の最新活動に伴う新たな古地 震像.地球惑星科学連合大会, SSS34-14, 2014.
- 近藤久雄・谷口薫,糸魚川-静岡構造線活断層系中部の諏訪湖周辺における古地震調査.巨 大地震による複合的地質災害に関する調査・研究報告書,地質調査総合センター速報, 66,147-158,産業技術総合研究所地質調査総合センター,2014.
- 近藤久雄・杉戸信彦・木下博久・池田哲哉,高時間分解能堆積物に基づく古地震履歴復元 と不規則な大地震発生 -糸静線活断層系・茅野断層のジオスライサー調査-.日本活断層 学会 2008 年度秋期学術大会, P-09, 2008.
- 近藤久雄・木村治夫,変位履歴に基づく連動性評価のための地形地質調査.文部科学省研 究開発局・国立研究開発法人産業技術総合研究所,活断層の評価に関する調査研究「活 断層帯から生じる連動型地震の発生予測に向けた活断層調査研究」平成29年度成果報 告書,3-54,2017.
- 近藤久雄・木村治夫・杉戸信彦,変位履歴に基づく連動性評価のための地形地質調査.文 部科学省研究開発局・国立研究開発法人産業技術総合研究所,活断層の評価に関する調 査研究「活断層帯から生じる連動型地震の発生予測に向けた活断層調査研究」平成30年 度成果報告書,4-76,2018.
- 近藤久雄・木村治夫・杉戸信彦・下釜耕太・佐伯健太郎・川島裕貴・亀高正男・高岡宏之, 糸魚川-静岡構造線断層帯・松本盆地東縁断層南部における最新活動時期と横ずれ変位 量,日本活断層学会 2019 年度秋季学術大会,0-7,2019.
- Maruyama, S., Takemura, K., Hirata, T., Yamashita, T. and Danhara, T., Petrographic Properties of Visible Tephra Layers in SG93 and SG06 Drill Core Samples from Lake Suigetsu, Central Japan. Journal of Geography (Chigaku Zasshi), 128, 879-903, 2019.
- 松田時彦・山崎晴雄・中田 高・今泉俊文, 1896 年陸羽地震の地震断層, 東京大学地震研 究所彙報, 55, 795-855, 1980.
- 松田時彦,最大地震規模による日本列島の地震分帯図,地震研究所彙報,65,289-319,1990.
- 三浦大助・幡谷竜太・阿部信太郎・青柳恭平・宮腰勝義・井上大栄,糸魚川-静岡構造線 活断層系中~南部のセグメンテーションモデル,地球惑星科学関連学会 2002 年合同大 会, J029-P011, 2002.
- 文部科学省研究開発局・国土交通省国土地理院・東京大学地震研究所,糸魚川-静岡構造線断層帯における重点的な調査観測平成17~21年度成果報告書,362p,2010.
- 奥村晃史・下川浩一・山崎晴雄・佃栄吉,糸魚川-静岡構造線活断層系の最近の断層活動 -牛伏寺断層・松本市並柳地区トレンチ発掘調査-,地震第2輯,46,425-438,1994.
- 澤祥・東郷正美・今泉俊文・池田安隆, 1:25,000 都市圏活断層図「茅野」,国土地理院, 1998.
- Wesnousky, S. G., Seismological and structural evolution of strike-slip faults, Nature, 335, 340-343, 1988.
- Wesnousky, S.G., Displacement and geometrical characteristics of earthquake surface ruptures: Issues and implications for seismic-hazard analysis and the process of earthquake rupture. Bull. Seismol. Soc. Am. 98, 1609–1632, 2008.
- 山崎晴雄・下川浩一・水野清秀・鹿島 薫,日本海東縁部およびフォッサマグナ周辺の地震 テクトニクスの研究―地殻構造調査.科学技術振興調整費「中部日本活構造地域の地震 テクトニクスに関する研究」第 I 期,第 II 期成果報告書, 69-79, 1991.

図 25 北部区間の神城断層/松本盆地東縁断層北部における変位履歴と連動イベントの

まとめ

図 26 中北部区間/中南部区間のセグメント境界付近における 活動履歴と連動イベントのまとめ

図 27 糸魚川-静岡構造線断層帯における連動履歴・確率試算のまとめ 本事業で連動型地震と判断したイベント(赤,青,緑色ボックス) 関東地域の活断層の長期評価(2015)及び本事業で新たに検出された区間単独の活動時期 (灰色ボックス)

(3) 平成 29~令和元年度の成果

(a)業務の要約

糸魚川-静岡構造線断層帯の北部区間から中南部区間を対象として、過去の地震時変位 量等の変位履歴に基づき連動確率を試算する評価手法を構築するため、以下の調査研究を 実施した。平成 29 年度には北部区間を構成する神城断層及び松本盆地東縁断層北部にお いて変位履歴調査を実施するため、トレンチ調査、群列ボーリング調査、S波反射法地震 探査を実施した。その結果、池田町会染地区において過去3回の上下変位量を復元し、安 曇野市明科七貴地区において最新活動に伴う上下変位量を復元した。また、地震時変位量 と断層長の経験式から地震イベント毎の活動範囲を推定した。その結果と既存の情報を整 理し、過去に周辺の断層と連動した地震イベントを検討し、その発生頻度を明らかにした。 さらに、神城断層の変位履歴と比較検討し、両断層が連動したと考えられる地震イベント を抽出した。

平成 30 年度には北部区間の神城断層において前年度の補足調査を実施した。神城断層 の中綱湖地点においてボーリング調査とジオスライサー調査を実施し、平均上下変位速度 と最近2回の活動時期を明らかにした。さらに、木崎湖南方地点においてボーリング調査 を実施し、最近7回のイベント発生年代と地震時変位量を明らかにした。これらの成果か ら、既往の地震発生確率評価手法に基づき、2014年長野県北部の地震で未破壊の神城断層 は、今後 30 年以内の地震発生確率は6~17%程度、地震後経過率は80~140%と試算した。

平成 30 年度にはさらに、中北部区間の松本盆地東縁断層南部に位置する安曇野市豊科 高家地点において、三次元的なトレンチ調査を実施した。その結果、6世紀以降に生じた 最新活動に伴う横ずれ量を推定した。また、松本市島内地点においてボーリング調査を実 施し、過去2回の活動に伴う横ずれ量を推定した。さらに、松本盆地東縁断層南部の田沢 測線においてP波反射法地震探査を実施し、東傾斜 75°程度の断層傾斜を推定した。以上 の調査結果と既存の情報を整理し、地震時変位量をもとに連動型地震を判別し、断層長と の経験式からイベント毎の活動範囲と連動間隔を推定した。その連動間隔を基にポアソン 過程による連動確率を試算した。

令和元年度には、糸静断層帯で最大規模の区間境界である諏訪湖周辺において、中北部 区間と中南部区間の連動イベントを検討するため、次の調査を実施した。中北部区間の諏 訪湖南岸断層群・岡谷湊地点において、トレンチ・ボーリング調査を実施した。その結果、 周辺では少なくとも 0.9mm/yr の上下変位速度であると推定した。中南部区間の南端付近 に位置する下蔦木断層・下蔦木地点において3Dトレンチ調査、ドローンLiDAR 調査、ボ ーリング調査等を実施した。その結果、調査地点において約1万年前以降に3回の活動が 推定され、最近2回の活動に伴う地震時変位量はいずれも約3mであった。最新活動は、 北部~中北部区間の連動イベント(西暦 762年もしくは841年の歴史地震)とは異なるイ ベントであり、中南部区間との連動イベントである可能性がある。これらの連動履歴から 算出される中南部~南部区間の連動間隔は約3700~7200年である可能性があり、ポアソ ン過程に基づく今後30年間の連動確率を0.4~0.8%と試算した。また、既存の中北部区 間および中南部区間における活動履歴や地震時変位量を総合して、過去約1万年間に両区 間が連動したイベントは約3000~3200年前の1回であることを推定した。この場合、連動 間隔は最小で7000年程度であり、ポアソン過程に基づく今後30年間の連動確率を0.4% 以下と試算した。北部~中南部の3区間に至る連動イベントは、過去1万年間の変位履歴 では検出されなかった。さらに、これまでの変位履歴と既存の活動履歴をまとめ、断層帯 で生じた連動型地震の連動範囲と地震時変位量の推定、連動確率の試算結果を整理した。

(b) 業務の成果

1)神城断層・大町市平青木地点におけるボーリング調査

本地点は、2014 年長野県北部の地震では活動しなかった神城断層付近に位置し、青木湖と 中綱湖の間に位置している(図 28~30)。周辺では湖成段丘面及び河成段丘面が神城断層 の上盤側に分布しており、湖成層に基づき平均変位速度を従来よりも高精度に推定するた め、断層の低下側で深さ 20m までのボーリング調査を実施した。断層の隆起側においても 調査を計画・検討したものの、積雪により調査資材の搬入ができなかったため、令和元年 度以降に実施することとした。

ボーリング調査の結果、下位から花崗岩からなる基盤岩、深度 12m 以浅に湖沼性堆積物 とみられる砂層、腐植質シルト層と泥炭層との互層、人工撹乱土層が分布することが明ら かとなった(図 31)。人工撹乱土層は深度 3.36m までであり、ビニール片等の人工物が含 まれる。深度 3.5m 以深の腐植質シルト層及び泥炭層から採取した放射性炭素同位体年代 測定の結果、基盤岩を不整合に覆う湖沼性堆積物は少なくとも約 1.3 万年前以降に堆積し たと推定される。これらの湖沼性堆積物には最大 45°程度で傾斜した砂層も含まれており

(例えば深度7~8m)、層序と矛盾する年代測定値も含まれている。深度3.8m付近から 深度7.1m付近までは概ね層序と整合的な年代値を示すが、さら下位では腐植質シルト層 や砂層の層理面を切断する剪断面もみられることから、コア内に数条の断層を識別した。

暫定的な上下変位速度として次の見積もりをおこなった。約5千年前の層準は深度4.6m と9.8mに層序と矛盾して認められ、その間に数条の断層が識別される。この5.3mの高度 差が4690±30y.B.P.以降の逆断層変位で生じたと仮定した場合、平均的な上下変位速度は 1.1mm/yrとなる。ただし、このコアは神城断層の地表トレースよりも数十m西側に位置し ており、幅広い撓曲変形帯ないし分岐した断層の一部である可能性があるため、1.1mm/yr の上下変位速度は現段階では最小値と考えられる。

今後、断層の隆起側でも追加のボーリング調査等を実施し、今回の断層低下側の層序と の対比を検討することによって神城断層の平均変位速度を高精度に推定する。その結果を 基に、2014年長野県北部の地震では活動しなかった、神城断層南半区間の活動性を明らか にし、変位履歴から推定される連動型地震と非連動型地震が長期間にどの程度繰り返した かを検討する資料としていく。

図 28 糸魚川-静岡構造線断層帯の活動区間 活動区間は地震調査研究推進本部地震調査委員会(2015)による。Kondo et al. (2008)に加筆。

図 29 糸魚川-静岡構造線断層帯北部区間と調査位置 地震調査研究推進本部地震調査委員会(2015)に加筆。

図 30 中綱湖周辺(大町市平)の神城断層と地形の分布、ボーリング調査位置 国土地理院発行の米軍撮影空中写真 R1785-39 に加筆。

図 31 大町市平青木におけるボーリングコア(TAO-1 孔) 赤矢印は断層、黄色の数字は放射性炭素同位体年代測定値(y.B.P.)を示 す。AT は姶良-丹沢火山灰。深度 15mから 20mまで花崗岩が続くが、こ こでは省略した。 2) 神城断層・木崎湖南方地点における変位履歴の再検討

木崎湖南方地点は神城断層の南端付近に位置する(図 29,32)。産業技術総合研究所は 同地点で2006年にジオスライサー・ボーリング調査を実施した。その成果の概略は奥村・ 他(2007)で速報として報告されている。今回、2006年当時に復元された地形地質断面を 仔細に再検討し、過去の活動時期と地震時上下変位量を復元した。ボーリングの密度が少 なく地層の分布が不明な場所については、現状で得られるコアの地層の傾斜や変形の累積 性を考慮して、地層の分布を外挿した。

特に、コア写真や地層の年代、対比を再検討することにより、調査当時は重視しなかっ た東傾斜の低角逆断層をあらためて認定した(図 33)。撓曲変形の上盤側のボーリングコ アでは、砂層とシルト層の互層からなる湖沼性堆積層が40~70°で傾斜している。この傾 斜は一般的な砂の安息角と内部摩擦角を越えていることから、コアで認められていた傾斜 20~30°の逆断層を神城断層の本体として判断した。このように逆断層の存在を再検討し 傾斜を求めた結果、地震時上下変位量をネットスリップに換算することが可能となった。 約9千年前から約1.2万年前の層準が11~12mの累積変位を生じていることから、平均的 な上下変位速度は0.9~1.3 mm/yr であることが明らかとなった。

今回の再検討の結果、約1.2万年前以降に少なくとも4回、不確かな活動を含めて6回 の地震イベントを認定し、それらの活動時期と地震時上下変位量を元に予察的な時間-変 位ダイアグラムを作成した(図34)。現時点ではいずれのケースにおいても3m程度の地 震時上下変位量が2回ずつ復元され、最新活動に伴う変位量は共通して3.1mである。本 地点の南約300mで実施されたトレンチ調査とGPR探査の結果では、最新活動時の上下変 位量が3.0m以上と求められており(丸山・他,2010;木村・他,2013)、本研究の上下変 位量と矛盾しない。3.1mの上下変位量は傾斜20~30°の逆断層で6.2~9.1mのネットス リップに相当するため、変位量と地震断層長のスケーリング則(松田・他,1980)によれ ば約60~90kmの活動範囲に相当する。よって、最新活動は本地点を含む長さ26kmの神城 断層単独の活動ではなく、少なくとも南隣の松本盆地東縁断層北部と連動したイベントと 判断出来る。

さらに、イベントを6回認定したケースでは、最近4回の活動が時間的なクラスタリン グを生じ、それに先行して2千年以上の長い休止期間が生じている可能性がある。約7~ 9千年前に地層が欠落する期間があるものの、クラスタリング内のイベントは変位予測モ デル的な繰り返しになっており、この期間では約2mm/yrの上下変位速度であった可能性 もある。今後、補足の調査を実施して、断層構造と地層の対比、年代、イベント識別回数、 地震時変位量を改良して変位履歴を精緻化し、これらの課題を検討していく。

図 32 木崎湖南方地点におけるジオスライサー・ボーリング調査の位置
本研究で再検討した木崎湖南方地点は、奥村・他(2007)の位置。
Taira site は丸山・他(2010)によるトレンチ・ボーリング地点。
基図は丸山・他(2010)を引用。

図 33 木崎湖南方地点におけるジオスライサー・ボーリング調査の再検討 に基づく地形地質断面図

図34 木崎湖南方地点における予察的な時間-変位ダイアグラム (左)イベントを6回認定したケース、(右)イベントを4回認定したケース。 灰色の年代区間は、地層が欠落する期間。カラーのボックスはイベント年代の推定幅 (1 g)。

3)松本盆地東縁断層北部・池田町会染地区における反射法地震探査・ボーリング調査 本地区は、糸魚川ー静岡構造線断層帯北部区間を構成する松本盆地東縁断層北部のほぼ 中央付近に位置する(図 29,35)。周辺では、東側隆起の低角逆断層が大峰山地から西流 する扇状地面群を切断し、東側隆起の低断層崖および撓曲崖を生じている。既往の調査研 究では、トレンチ・ボーリング調査が実施され、過去2~3回の活動時期が推定されてい る(丸山・他,2010;近藤・谷口,2014)。本調査では、それらの活動に伴う地震時上下変 位量を明らかにすること、断層変位に横ずれ成分を伴うかを検討することを目的として、 S波反射法地震探査及びボーリング調査を実施した。以下にそれらの結果を述べる。

a)池田町会染地区におけるS波反射法地震探査

i)探查測線

長野県北安曇郡池田町の会染花見地点において、合計6本の測線でS波反射法地震探査 を実施した。探査測線の配置状況を図36に示す。本地点では推定される断層構造にできる だけ直交するEW-1測線(測線長:334m)、EW-2測線(同:430m)、EW-3測線(同:130m) を設定した。また、断層に平行な方向での地下地質構造の変化を把握するために、断層に 平行かつEW-1測線、EW-2測線に直交するNS-1測線(測線長:330m)、NS-2測線(同:500 m)、NS-3測線(同:300m)を設定した。NS-2測線とEW-1測線の交差地点およびNS-2測線 とEW-2測線の交差地点については、共通反射点重合法による反射法探査において重合数が 低下し結果断面の信頼性がやや低下する測線端部付近で交差するため、交差地点近傍にお いてボーリング掘削調査を実施し、交差する両測線(両断面)の反射面の対比の信頼性向 上を期した。

図 35 松本盆地東縁断層北部と池田町会染地区における調査位置 黄色の枠は図 36 の範囲を示す。近藤・谷口(2014)に加筆。

図 36 反射法地震探査測線およびボーリング掘削地点の配置図(会染花見調査地点) 基図は池田町発行1:2,000地形図を使用。各測線に付した数字は測線端からの距離 (m)を示す。

ii)探査データの取得

一般的な共通中間点重合法による反射法地震探査(例えば、物理探査学会,2016)の現

場データ取得作業の模式図を図37に示す。反射法地震探査は、地表で人工的に発生させた 地震波が地下に伝播し、地下の地質・土質境界・断層等で反射されて再び地表に戻ってく る現象を利用し、地下構造を断面像として描き出す手法である(例えば、物理探査学会, 2016)。

池田町会染花見地点および後述する安曇野市明科七貴地点で実施した探査の主なデー タ取得仕様をまとめて表1に、本探査で使用した機材の仕様を表2に示す。本探査では極 浅部構造の把握を目的とするため、分解能の高いS波探査を実施した。S波震源には、積 雪状況・道路状況から振源設置が確実に行えるように高周波な波の発生が可能なポータブ ルバイブレータを使用した(図38)。

図 37 S 波反射法地震探查測定模式図

	池田町 会染花見			
測線名	NS-1	NS-2	NS-3	
測線長	332m	504m	302m	
受振点間隔	2m			
発振点間隔	2m			
展開方式	エンドオン、固定展開	エンドオン、固定展開	エンドオン、固定展開	
振源	ポータブルバイブレータ			
起振周波数	10-100Hz			
スウィープ長	8秒			
収録時間	2秒(コリレーション後)			
サンプリングレート	0.5ms			
垂直重合数	4~8回	4~6回	4~8回	
	池田町 会染花見			
測線名	EW-1	EW-2	EW-3	
測線長	336m	432m	132m	
受振点間隔	2m			
発振点間隔	2m			
展開方式	エンドオン、固定展開	エンドオン、固定展開	固定展開	
振源	ポータブルバイブレータ			
起振周波数	10-100Hz			
スウィープ長	8秒			
収録時間	2秒(コリレーション後)			
サンプリングレート	0.5ms			
垂直重合数	4~8回	4~8回	4回	

表1 主な探査データ取得仕様

表 2	測定機器	仕様-	-覧

振源:S波	最大出力荷重	500N	OYO CAG(オランダ)製
(ポータブルバイブレータ)	発振周波数帯	10Hz~500Hz	
	総重量	100kg	
受振器:S波	固有周波数	14Hz	OYO Geospace(米国) 製
(GS-20DM)	波種	水平動用地震計	
受振ケーブル:浅部探査用	テイクアウト数	12ch/本	OYO Geospace(米国) 製
(CDPケーブル)	テイクアウト間隔	2m	
	最大接続成分	48ch	
データ収録器	システム構成	24chフィールドモジュール	Geometrics, Inc.(米国) 製
(GEODE)		システムコントローラ	
		ラップトップコンピュータ	
	チャンネル数	24ch/モジュール	
	サンプリング間隔	0.02, 0.03125, 0.0625, 0.125msec	
		0.25, 0.5, 1.0, 2.0, 4.0, 8.0, 16.0msec	
	サンプリング数	64,000サンプル	
	A/Dコンバータ	24ビット シグマ・デルタコンバータ	
	プリアンプ	0dB, 12dB, 24dB, 36dB	
	データフォーマット	SEG-2	

図 38 ポータブルバイブレータ

iii)探査データの処理

取得した探査データに対して、一般的な共通中間点重合法(例えば、物理探査学会,2016) による各種のデータ編集・フィルタ処理を施した。通常のデータ取得時に得られた記録に は周囲を通過する車両や工場などの施設に起因する振動、および送電線等から発生される 電磁波によるノイズが含まれる。また、反射法探査の解析を実施する上で不要とされる表 面波などの波も定常ノイズとして含まれる。そのため、反射法探査のデータ処理によって、 上記のノイズ成分を含んだ収録記録から反射波を抽出して解析することにより、地質およ び構造解釈に資する探査結果断面を得た。これらの探査データ処理作業は反射法探査解析 システムSeisSpace ProMAX (Halliburton Energy Services社製)を用いて、図39に示す過程 によって行った。

図 39 反射法探査の解析処理フローチャート

iv)探查結果

図 40 に EW-3 測線でのオリジナルの発振記録例を示す。測線端部まで初動を追跡でき、 おおむね良好な記録が取得できている。

取得記録に対してバンドパスフィルタを適用した。パラメータテストの結果、スウィー プ周波数 10~80Hz において有意な信号が含まれていると判断し、スウィープ周波数に近 い帯域にフィルタの通過帯域を設定した。その後、振幅回復処理、デコンボリューション 処理を適用した。デコンボリューション適用後、反射断面の波形の連続性向上のため低周 波を強調する目的でバンドパスフィルタを適用した。上記処理適用後の発振記録例を図 41 に示す。オリジナルの発振記録と比較して波形が整理され、S/N が向上した記録であるこ

図 40 EW-3 測線におけるオリジナルの発振記録例 図の上部の SP は震源の位置:測線端からの距離(m)を示す。

図 41 EW-3 測線における各種処理適用後の発振記録例 図の上部の SP は震源の位置:測線端からの距離(m)を示す。

上記処理後、速度解析により構築した速度構造に基づいて NMO 補正を行い、残差静補正 処理を実施した。残差静補正により起振点・受振点近傍の不均質に起因すると思われる反 射波走時のずれが補正され、反射面の連続性が向上したことを確認した。その後、CMP 重 合処理を実施した。得られた重合断面(図42~47)に、FK マイグレーションを適用した。 使用した速度構造は、マイグレーションのパラメータテストにより、速度解析で得られた 速度構造を 80%にスケーリングしたものである。マイグレーション処理を施した時間断面 (図48~53)に対して、平滑化した速度構造を用いて深度変換を行い、それぞれ深度変換 断面を作成した(図 54~59)。ここで、各種のデータ処理に適用したパラメータを表3に 示す。

図 42 EW-1 測線の重合断面図 相対振幅表示の色は赤を正とする。以下、図 16~32 も同様。

図 43 EW-2 測線の重合断面図

図 44 EW-3 測線の重合断面図

EW-1 測線のマイグレーション時間断面図 図 48

NS-3 測線の重合断面図 図 47

CDP

NS-2 測線の重合断面図 図 46

NS-1 測線の重合断面図 図 45

NS-3 測線のマイグレーション時間断面図 図 53

CDP 300 280 260 240 220 200 180 160 140 120 100 80 60 40 20

図 52 NS-2 測線のマイグレーション時間断面図

図 51 NS-1 測線のマイグレーション時間断面図

320 300 280 260 240 220 200 180 160 140 120 100 80 60 40 20 CDP

CDP 10 20 30 40 50 60 70 80 90 100 110 120 130

500 480 460 440 420 400 380 360 340 320 300 280 260 240 220 200 180 160 140 120 100 80 60 40 20

CDP

表3 池田町会染花見地区の反射法地震探査データの処理に適用したパラメータ

		池田町 会梁花見	
測線名	EW-1	EW-2	EW-3
ジオメトリ情報			
CDP間隔	1m	1m	1m
CDP範囲	3-338	2-433	3-134
バンドパスフィルタ			
周波数帯域	20/25-90/100 Hz	20/25-70/80 Hz	20/25-90/100 Hz
振幅回復処理			
真振幅回復	-		-
AGCゲート長	400ms	400ms	500ms
		2	
デコンボリューション			
アルゴリズム	Zero phase spiking	Zero phase spiking	Zero phase spiking
ゲート長	<u>300ms(ゼロオフセット)</u>	<u>300ms(ゼロオフセット)</u>	200ms(ゼロオフセット)
オペレータ長	10ms	10ms	10ms
デコン後BPF	0/10-70/80 Hz	0/10-70/80 Hz	0/10-70/80 Hz
デコン後AGC	-	500ms	-
その他処理	-	ノッチフィルタ(40Hz)	ノッチフィルタ(40Hz)
速度解析			
間隔	20CDP	20CDP	10CDP
残差静補止	-	-	
	-	-	Max. Power Autostatics
最大許容量	-	-	10ms
CDP重合処理			
NMO-ストレッチミュート	100%	100%	100%
マイグレーション			
アルゴリズム	FK	FK	FK
速度スケール	80%	100%	100%
		池田町 会染花見	
測線名	NS-1	NS-2	NS-3
ジオメトリ情報			
CDP問隔	1m	1m	1m
	2,226	2 506	2 204
	3-330	3-506	3-304
バンドバスフィルタ			
周波数帯域	20/25-70/80 Hz	20/25-90/100 Hz	20/25-90/100 Hz
具版幅凹復	-		
AGCゲート長	500ms	300ms	400ms
デコンボリューション			
アルゴリズム	Zero phase spiking	Zero phase spiking	Zero phase spiking
	200mg(ガロナフナッルト)	200mc(ガロナフオッルト)	300mp(+70+7+7+1)
オペレーダ長	ZUms	IUms	ZUms
デコン後BPF	5/10-90/100 Hz	0/10-70/80 Hz	0/10-70/80 Hz
「デコン後AGC	-	300ms	-
その他処理	ノッチフィルタ(40日-)	ノッチフィルタ(40・60日-)	/ッチフィルタ(40H-)
その他処理	ノッチフィルタ(40Hz)	ノッチフィルタ(40・60Hz)	ノッチフィルタ(40Hz)
その他処理	ノッチフィルタ(40Hz)	ノッチフィルタ(40・60Hz)	ノッチフィルタ(40Hz)
その他処理 速度解析	ノッチフィルタ(40Hz)	ノッチフィルタ(40・60Hz)	ノッチフィルタ(40Hz)
その他処理 速度解析 間隔	ノッチフィルタ(40Hz) 20CDP	ノッチフィルタ(40・60Hz) 20CDP	ノッチフィルタ(40Hz)
その他処理 速度解析 間隔	ノッチフィルタ(40Hz) 20CDP	ノッチフィルタ(40・60Hz) 20CDP	ノッチフィルタ(40Hz) 20CDP
その他処理 速度解析 間隔 確美論補正	ノッチフィルタ(40Hz) 20CDP -	ノッチフィルタ(40・60Hz) 20CDP	ノッチフィルタ(40Hz) 20CDP -
その他処理 速度解析 間隔 残差静補正	ノッチフィルタ(40Hz) 20CDP -	ノッチフィルタ(40・60Hz) 20CDP -	ノッチフィルタ(40Hz) 20CDP -
その他処理 速度解析 間隔 残差静補正 アルゴリズム	ノッチフィルタ(40Hz) 20CDP - - -	ノッチフィルタ(40・60Hz) 20CDP - - -	ノッチフィルタ(40Hz) 20CDP - - -
その他処理 速度解析 間隔 残差静補正 アルゴリズム 最大許容量	ノッチフィルタ(40Hz) 20CDP - - - -	ノッチフィルタ(40・60Hz) 20CDP - - - -	ノッチフィルタ(40Hz) 20CDP - - - -
その他処理 速度解析 間隔 残差静補正 アルゴリズム 最大許容量	ノッチフィルタ(40Hz) 20CDP - - - -	ノッチフィルタ(40・60Hz) 20CDP - - - -	ノッチフィルタ(40Hz) 20CDP - - - - -
その他処理 速度解析 閲隔 残差静補正 アルゴリズム 最大許容量 CDP軍合処理	ノッチフィルタ(40Hz) 20CDP - - -	ノッチフィルタ(40・60Hz) 20CDP - - -	ノッチフィルタ(40Hz) 20CDP - - - -
その他処理 速度解析 間隔 残差静補正 アルゴリズム 最大許容量 CDP重合処理	ノッチフィルタ(40Hz) 20CDP - - - -	ノッチフィルタ(40・60Hz) 20CDP - - - -	ノッチフィルタ(40Hz) 20CDP - - - -
その他処理 速度解析 問隔 残差静補正 みた許容量 B CDP重合処理 MMOーストレッチミュート	ノッチフィルタ(40Hz) 20CDP - - - - 100%	ノッチフィルタ(40・60Hz) 20CDP - - - - 100%	ノッチフィルタ(40Hz) 20CDP - - - 100%
その他処理 速度解析 間隔 残差静補正 アルゴリズム 最大許容量 CDP重合処理 NMOーストレッチミュート	ノッチフィルタ(40Hz) 20CDP - - - 100%	ノッチフィルタ(40・60Hz) 20CDP - - - 100%	ノッチフィルタ(40Hz) 20CDP - - - 100%
その他処理 速度解析 間隔 残差静補正 アルゴリズム 最大許容量 CDP重合処理 NMOーストレッチミュート ×イグレーション	ノッチフィルタ(40Hz) 20CDP - - - 100%	ノッチフィルタ(40・60Hz) 20CDP - - - - 100%	ノッチフィルタ(40Hz) 20CDP - - - 100%
その他処理 速度解析 閲隔 残差静補正 及差静補正 CDP重合処理 NMO-ストレッチミュート マイグレーション アルゴリズム	ノッチフィルタ(40Hz) 20CDP - - - 100% FK	ノッチフィルタ(40・60Hz) 20CDP - - - 100% FK	ノッチフィルタ(40Hz) 20CDP - - - - 100% FK
その他処理 速度解析 間隔 残差静補正 及上許容量 B CDP重合処理 CDP重合処理 マイグレーション アルゴリズム 達度なケー॥	ノッチフィルタ(40Hz) 20CDP - - - 100%	ノッチフィルタ(40・60Hz) 20CDP - - - 100%	ノッチフィルタ(40Hz) 20CDP - - - 100%

得られたマイグレーション深度変換断面(図 54~59)を見ると、すべての断面において 最大深度 20~30m程度まで明瞭な反射面が見られ、とくに断層の低下側にあたる EW-2 断 面(図 55)の距離 0m~50m程度の範囲では深度 40m程度まで確認できる。また、これら の断面内で浅部から深部に至るまで極端に振幅の小さい領域は見られない。したがって、 こうした反射波が到達した深度までの地下構造を検討するに足りる断面であると言える。 ー方で、EW-1 断面(図 54)の距離約 180m~330m、EW-2 断面(図 55)の距離約 320m~ 430m、NS-1 断面(図 57)の距離約 130m~280m、NS-3 断面(図 59)の距離約 210m~ 290mなどでは地表付近から深度10mないし15m程度までの間で周辺よりも反射波の振幅 が小さくなる領域が存在する。これらの領域はすべて断層の上盤側に分布しているが、極 浅部の現象であり、測線設置状況や人工改変の影響の可能性もあることから、地下地質構 造の解釈の際には注意を要する。逆に、EW-1 断面(図 54)、EW-2 断面(図 55)、NS-1~NS-3 断面(図 57~59)では標高 590m前後に振幅が強くて連続性の良い反射面が見られる。 これらの5断面はお互いに交差しているので、反射面が断面相互でどのように連続するか について検討することが可能である。しかし、この反射面が5断面とは独立した EW-3 断面 (図 56) でのどの標高の反射面に連続するかについては本探査結果のみだけでは判断はで きず、掘削結果もあわせて検討する必要がある。

断層にほぼ直交する EW-1~EW-3 断面(図 54~56)では地表断層トレース位置に対応した部分に明瞭な反射面の途切れや曲がりが見られ、これらは断層変形構造を示していると考えられる。以下、それぞれの断面における断層位置の解釈(図 60~62)について述べる。

EW-1 断面(図 60)では標高 590m~600m・距離約 20m~330mに非常に連続性の良い反 射面群が見られ、その下位でも比較的連続性の良い反射面が多く見られる。また、断面の 西端付近の距離 0m~20mでは地表から深度約 30m付近に至るまで明瞭で水平な反射面群 が見られる。こうした反射面は地表付近では距離 20m付近で途切れたり食い違ったりして おり、その途切れ・食い違いの位置は断層面の形状を反映しており、東方に 20~30°程度 で傾斜する(図 60)。

EW-2 断面(図 61)では断面中央から断面東端では反射面はほぼ水平であるのに対して、 断面の西側の距離約 50m~200mにかけての反射面は東側が上昇するような曲がりの形状 を呈している。これは本探査地点における逆断層運動に伴う地層の変形を示すものと考え られる。こうした反射面の曲がりの形状から、距離約 50m~80mの間に、逆断層にともな う変形フロントが位置していると考えられる。ただし、地下の詳細な断層面形状を求める ためには今後さらなる検討が必要である。

EW-3 断面(図 62)の標高 575mより上方では、断面の西側の距離 0m~70mにはほぼ水 平で連続性の良い反射面が卓越するのに対して、断面の東側の距離 80m~130mでは緩や かに西側へ傾斜する反射面が多く見られる。断面西側のほぼ水平な反射面群と断面東側の 緩やかに西へ傾斜する反射面群の間には途切れや食い違いが見られ、その部分が断層面の おおよその位置であるとして解釈した。また、EW-3 断面の距離 35m~90m・標高 575m~ 555mの領域では、明瞭な東傾斜の反射面が見られる。この反射面は他の反射面群と比べて 明らかに異質なものであり、その実体の把握のためには、掘削調査の結果なども含めて今 後慎重に検討する必要がある。

図 60 EW-1 測線の深度変換断面図における断層位置の解釈

図 61 EW-2 測線の深度変換断面図における断層変形フロント位置の解釈

図 62 EW-3 測線の深度変換断面図における断層位置の解釈

b)池田町会染地区における変位履歴調査

池田町会染地区ではS波反射法地震探査断面でみられる反射面の対比と層序や年代を 明らかにするため、群列ボーリング掘削調査(AKM-0~8)をおこなった。以下では、本研 究によるS波反射法地震探査と既存のトレンチ・ボーリングによる地形地質断面図との対 比と再検討をおこなった、EW-3 測線の結果について記述する。図 36 に池田町会染地区に おけるボーリング掘削位置、探査測線の配置図、図 63~図 69 に各ボーリングコアの写真 を示す。なお、EW-1 測線および EW-2 測線では年代測定結果が不足しているため、ここで は暫定的な推定地質断面図のみを図 70 および図 71 に提示するに留める。ただし、AKM-3 孔および AKM-4 孔は文科省委託「内陸及び沿岸海域の活断層調査・糸魚川-静岡構造線断 層帯(北部区間)」で掘削されたため、ここではコア写真の掲載を省略した。

EW-3 測線では、平成 24 年および 25 年に産業技術総合研究所によりトレンチ・ボーリン グ調査が実施され、地形地質断面図が作成されている(図 72)。当時の調査結果は、近藤・ 谷口(2014)にまとめられ、不確実なイベントや既存のトレンチ調査結果を含めて3回の 活動時期が推定されている。今回、同じ測線上で高分解能S波反射法地震探査を実施し、 地層境界に対応する反射面や東傾斜約 20°の逆断層をイメージングした。大局的な地質構 造は従来の見解と変わりないが、地層境界の傾斜に関する空間解像度がボーリングよりも 上がったため、より正確な地層の対比に基づく地形地質断面図を作成することができた。

今回の再検討によって、従来から推定されていた活動時期には変更がなく、最新活動時 期が1029±29~1217±30 y. B. P. (1217~928 Ca1BP)、1つ前が3741±30~3939±30 y. B. P. (4436~4005 Ca1BP)、2つ前が6540±30~8310±40 y. B. P. (9410~7427 Ca1BP)であ る(図73)。各イベントの上下変位量は、3回の累積として5.1m(⑩層の上面)、最近2 回の累積として3.4m(⑧層の上面)である。1つ前のイベントは⑦層堆積中に生じたと みられるが、その層準は正確に特定できないため、正確な地震時上下変位量が計測できな い。ただし、近藤・谷口(2014)と同様に最近2回の上下変位が同程度とみなせば、最近 3回のイベントの地震時上下変位量はいずれも1.7m程度である。これらの1.7mの上下 変位を逆断層の傾斜20°でネットスリップに換算すると5.0mとなる。今後、EW-1測線や EW-2測線においても地震時変位量の検討を詳細におこない、池田町会染地区での変位履歴 をより正確に明らかにする必要がある。

図 63 池田町会染地区におけるボーリングコア (AKM-0 孔)

図 64 池田町会染地区におけるボーリングコア (AKM-1 孔)

図 65 池田町会染地区におけるボーリングコア (AKM-2 孔)

図 66 池田町会染地区におけるボーリングコア (AKM-5 孔)

図 67 池田町会染地区におけるボーリングコア (AKM-6 孔)

図 68 池田町会染地区におけるボーリングコア (AKM-7 孔)

図 69 池田町会染地区におけるボーリングコア (AKM-8 孔)

図 70 池田町会染地区 EW-1 測線における推定地質断面図

図 71 池田町会染地区 EW-2 測線における推定地質断面図

図 72 池田町会染地区 EW-3 測線における地形地質断面図

(A) EW-3 測線のS波反射法地震探査、(B) 近藤・谷口(2014) によるトレンチ・ボー リング調査に基づく地形地質断面図、(C) トレンチ・ボーリング・S波探査結果を統合 した地形地質断面図。

図 73 EW-3 測線の地形地質断面における古地震イベントの較正暦年代 年代測定結果は近藤・谷口(2014)に基づく。オレンジ色の推定幅は、丸山・他(2010) による花見北地点の活動時期。0xCal v.4.3.2 (Ramsey, 2017)を基に暦年較正し、1 σ に対応する確率分布を示した。較正曲線は IntCall3 (Reimer et al., 2013)を使用し

た。

75

c)池田町会染地区における変位履歴と連動範囲の推定

本調査と既往の調査結果を総合し、池田町会染地区における過去活動時期は、新しいも のから1029±29~1217±30 y. B. P. (1217~928 Ca1BP)、3741±30~3939±30 y. B. P. (4436 ~4005 Ca1BP)、6540±30~8310±40 y. B. P. (9410~7427 Ca1BP)と推定された(図 73)。 さらに、それぞれの活動に伴う地震時変位量は、いずれも 1.7m程度と推定された。S波 反射法地震で推定された傾斜角は約 20°であり、これに基づき上下変位量をネットスリッ プに換算すると変位量は 5.0mとなる。ただし、横ずれ成分は現段階では不明のため、こ こでは加味していない。

これらの地震時変位量は、松田・他(1980)による地震断層長と変位量のスケーリング 則に基づけば、50kmの地震断層区間に相当する。一方、松本盆地東縁断層北部の断層長さ は約21kmである(地震調査研究推進本部地震調査委員会,2015)。すなわち、松本盆地東 縁断層北部が単独で活動し固有規模の地震を生じた場合には、地震時変位量は最大で約2 mと推定されるため、上述の変位履歴調査による実測値はこの推定値を明らかに上回って いる。そのため、変位履歴調査によって復元された地震時変位量から判断すれば、過去3 回のいずれの活動でも松本盆地東縁断層北部の単独ではなく、隣接した断層区間と連動し たと判断できる。

また、池田町会染地区は断層のほぼ中央付近にあたり(図 29)、地震時変位量は最大値 に近いと期待されるため、松本盆地東縁断層北部を含む少なくとも 50km 程度の断層区間 が一度に連動したことになる。なお、神城断層と松本盆地東縁断層北部により構成される 北部区間の長さは約 50km であり(地震調査研究推進本部地震調査委員会, 2015)、上記の 3回の活動は北部区間全体が連動した地震イベントであった可能性もある。今後、池田地 区の地震時変位量をより正確に復元するとともに、南隣の松本盆地東縁断層南部の変位履 歴を総合して検討すれば、それぞれの活動に伴う連動範囲がより正確に復元できるものと 期待される。 4) 松本盆地東縁断層北部・明科七貴地区におけるトレンチ調査

安曇野市明科七貴地区では、松本盆地東縁断層北部の活動時期と地震時変位量を明らか にするため、トレンチ調査を実施した。同地区は、既存の活断層図では伏在断層が指摘さ れているものの、断層の正確な地表位置が不明であった(図 74)。本調査により米軍撮影 の空中写真の再判読と地表踏査を実施した結果、調査地周辺には河成段丘面と沖積低地を 限り相対的に東側が隆起する低崖がみいだされた。段丘面は南東へ流下する高瀬川によっ て形成され南東から南方向へ緩やかに傾斜するが、段丘面上には不明瞭ながら西側低下の 撓曲変形と背斜状変形が新たに認められた(図 75,76:EW-2 測線)。そのため、この低崖 地形を松本盆地東縁断層北部によって形成された低断層崖と判断し、トレンチ調査を実施 した。トレンチは長さ 24m、幅4m、深さ 3.5m程度で低崖を横断して掘削した。トレン チ壁面の写真およびスケッチを図 77、図 78 にそれぞれ示す。

a)トレンチ壁面の層序と層相

トレンチ壁面には人工改変土層、河川性砂礫層及び砂質シルト層、砂礫層を切断する高 角東傾斜の断層が露出した。これらの地層を層相に基づき上位から I 層~V層に区分した。 以下に各地層の層相と特徴を略述する。

I層:粘土化した畦畔土(I a 層)と、田畑耕作土(I b 層)からなる。褐~暗灰褐色 を呈し、塊状の不淘汰な有機質礫混り礫混じりシルトからなる。植物根やビニール片など の人工物を含み、下位のⅡ層との境界は明瞭である。植物根や人工物を含むことから、耕 作土と判断される。

Ⅱ 層は細~中粒砂からなる Ⅱ a 層と、シルト~中粒砂からなる Ⅱ b 層に区分される。

Ⅱ a 層:暗灰~灰褐色を呈し、淘汰が悪い有機質分を含む細~中粒砂からなる。植物根 を含む。下位のⅡ b 層との境界は漸移的である。有機質分や植物根を含み、下位のⅢ 層と 明瞭に境することから、旧耕作土と判断される。

Ⅱ b 層: 灰褐~灰色または黄褐色を呈し、淘汰は悪いシルト~中粒砂からなる。分布は N08 付近及び S08 付近と、N09~N18 及び S09~S22 にみられる。下位のⅢ 層との境界は明 瞭である。N08 付近及び S08 付近の黄褐色のシルト~中粒砂は、下位の礫層を浸食するよ うな弧状の分布を示すこと、分布が局所的であることからから、旧耕作土に沿った旧水路 の堆積物と判断される。

Ⅲ層はシルト分を含む極細〜細粒砂からなるⅢ a 層、礫からなるⅢb 層、細礫からなる Ⅲc 層に区分される。

Ⅲa層:灰褐~灰色を呈し、淘汰は悪いシルト分を含む極細~細粒砂からなる。薄層またはレンズ状のシルトを挟む。一部に細礫が散在し、断層周辺のN05~N08付近またはS05~S08付近において、本層基底部に細~中礫サイズの礫層を挟む。下位のIV層との境界は明瞭で、傾斜不整合の関係を示す。

Ⅲb 層:褐色を呈し、淘汰の悪い礫からなる。基質支持で、基質は淘汰が悪くシルトを 含む黄褐色極細〜細粒砂からなる。礫は径約4cmの円〜亜円礫を主体とし、最大約 30cm である。分布はN05~N08付近またはS05~S08付近に限られる。上位のⅢa 層と下位のⅣ a 層が混ざった岩相を示し、分布はⅣa 層からなる崖下のみであることから、Ⅳa 層堆積後のⅢa 層由来の崩積土と判断される。 Ⅲc層:褐色を呈し、淘汰の悪い細礫からなる。概ね基質支持で、基質は極細〜細粒砂からなる。分布はN23~N24付近またはE00~E02付近に限られる。

IV層は礫からなるIV a 層、極細~細粒砂およびシルトからなるIV b 層と礫からなるIV c 層 に区分される。

IVa層: 灰白~灰褐色を呈し、比較的淘汰の良い礫からなる。礫は径約3~20cmの円~ 亜円礫を主体とし、最大約40cmである。概ね礫支持であるが、一部にレンズ状にシルト層 または砂層を挟む。基質は極粗粒砂からなる。礫種は主として、礫種は主として、花崗岩 類(花崗岩・花崗閃緑岩)、閃緑岩、閃緑斑岩、アプライト、斑岩、安山岩、溶結凝灰岩、 ホルンフェルス、砂岩、チャートからなる。本層は上位下位の地層に比べ、圧砕岩(カタ クレーサイト・マイロナイト等)の礫を多く含む。N02~N06付近またはS03~S06付近、 N11~N15付近またはS08~S16付近において、それぞれ下位のV層またはVI層を著しく削 り込み下位層が欠如する。

IVb 層:断層の東側と西側で岩相がやや異なる。東側のIVb 層は黄褐色を呈し、淘汰が良 い極細〜細粒砂からなる。分布はN19〜N24 付近またはS16〜S24 付近にみられる。西側の IVb 層は緑灰〜青灰色を呈し、淘汰は良いシルトからなる。本層上部にシルト質極細粒砂 層、一部に砂層をレンズ状に挟み、植物片、木片、細礫を含む。本層は、断層の東側でIV a 層の礫層と指交状に接し西側ではIVc 層の礫層と指交状に接することから、それぞれ同 時異相の関係にあると判断される。

IVc層:黄灰色を呈し、比較的淘汰は良い礫からなる。礫は径約5~20cmの円~亜円礫 を主体とし、最大約40cmである。概ね礫支持であるが、一部にレンズ状にシルト層または 砂層を挟む。その砂層に弱い斜交葉理や平行葉理が認められる。基質は粗~極粗粒砂から なる。礫種は主として、花崗岩類(花崗岩・花崗閃緑岩)、閃緑岩、アプライト、斑岩、安 山岩、ホルンフェルス、砂岩、チャートからなる。

V層:黄灰色を呈し、淘汰は良く、極細~粗粒砂からなる。分布は断層の上盤のみに認められる。本層は上部から、極細~細粒砂、細粒~中粒砂、細~極粗粒砂、極細粒砂、粗~極粗粒砂からなる。最下部の粗~極粗粒砂は礫をレンズ状に挟み、弱い斜交葉理や平行葉理が認められる。北壁面では N06~N11 付近においては平行葉理を有する砂層が上に凸の形状を示す。一方、南壁面では S08 付近で断層近傍の引きずり剪断を受けており、ほぼ直立した変形を生じている。下位のⅥ層との境界は明瞭で、傾斜不整合で接する。

VI層: 橙褐~灰褐色を呈し、淘汰はやや悪い礫からなる。礫は一部で酸化し、全体とし て橙色を呈する。礫は径約3~40cmの円~亜円礫を主体とし、最大径約40cmである。概 ね礫支持であるが、一部にレンズ状にシルト層または砂層を挟む。その砂層に弱い斜交葉 理や平行葉理が認められる。基質は粗粒砂からなる。礫種は主として、花崗岩類(花崗岩・ 花崗閃緑岩)、閃緑斑岩、アプライト、斑岩、安山岩、溶結凝灰岩、ホルンフェルス、礫岩、 砂岩、チャートからなる。カタクレーサイトも少量含む。

b)イベント層準の認定と年代、変位量

断層と地層の切断・被覆関係、上下変位量の差異に基づき、本調査では最近2回のイベントを認定した。断層はIVa層以下の地層を切断し、走向はN40°W、傾斜45~86°Eである。ここでは新しいものからイベント1、イベント2と呼称し、その認定根拠について記

載する。北壁面の断層近傍の拡大図を図 79、放射性炭素同位体年代測定の結果を表4、各 イベントの暦年較正年代を図 80 に示す。

イベント1:北壁面及び南壁面において、Wa 層を切断する断層は上端をIII層に覆われ る。Wa 層中の断層は剪断による礫の再配列を伴う(図 79)。砂礫層は高瀬川の本流性堆積 物であり、初生的なインブリケーションはトレンチに対して直交方向の南東方向であるが、 断層直近の礫は長軸がほぼ鉛直に再配列する。断層を挟んだWa 層上面の比高は 1.2mで ある。断層上端を覆うIIIa層およびIIIb層は断層の低下側にのみ分布し、Wa層に生じた高 度差や上に凸の変形構造に対してアバットして分布する。IIIb層は断層直上付近にのみ分 布するWa層由来の崩積土とみられる。以上から、Wa層に生じる断層変位及び変形構造と 被覆層であるIII層の分布状況から、最新活動のイベント1はWa層堆積後、IIIb層堆積前に 生じたと考えられる。

IVa 層からは年代試料が採取できなかったものの、下位のIVb 層から 1240±30 y.B.P. (1261~1091 CalBP: AD689~860年) と 1280±30 y.B.P. (1269~1184 CalBP: AD681~ 767年)、Ⅲa層からは 810±30 y.B.P. (735~690 CalBP: AD1215~1261年)の放射性炭素 同位体年代測定値が得られた(表4、図 80)。よって、最新活動時期は西暦 689~1261年 ないし約 1300~700年前に特定される。この年代は、従来のトレンチ調査で推定された松 本盆地東縁断層北部の最新活動時期(例えば、奥村・他, 1998;遠田・他, 2008)や、従 来から対比されてきた歴史地震である西暦 762年の地震(M>7.0程度:宇佐美・他、2013) とも調和的である。また、IVa 層上面を変位基準として、最新活動に伴う上下変位量は 1.2 mと計測される。

イベント2:北壁面の N07-N08 で認められる断層は、VI層内部で上方へ不明瞭となり、 V層の砂層に明瞭な上下変位を与えていない。また、VI層は断層の低下側では露出してお らず、最新活動に伴う 1.2mよりも大きな上下変位を受けている。さらに、断層より東側 でVI層は上位のV層と明瞭な傾斜不整合の関係にあり、VI層がより多くのイベントを記録 している可能性が高い。よって、VI層はイベント1に伴う変位だけでなく、それに先行す るイベント2により累積的な変位と変形を生じていると考えられる。以上から、イベント 2は、VI層堆積以降、V層堆積前に生じた。

VI層からは年代測定試料が採取できなかったものの、V層からは 2380±30 y.B.P. (2434 ~2349 Ca1BP: BC485~400 年)の年代値が得られた(表4,図 80)。よって、イベント2 の発生年代は、約 2400 年前以前に限定される。なお、2020±30 y.B.P.の年代値も得られ たが、試料に含まれる炭素量が少なく δ^{13} Cが測定できなかったため、イベントの発生年 代推定や暦年較正の対象からは除外した。

これらのイベントの発生年代から、最近2回の活動間隔の最小値は約 1100 年であると 推定される。

以上から、明科七貴地区における変位履歴調査の結果、西暦 689~1261 年に生じた最新 活動に伴い 1.2mの地震時上下変位が生じたことが明らかとなった。最新に先行する活動 は、約 2400 年前以前に限定される。トレンチ壁面に露出した断層の傾斜は最大で 86°E で あり、横ずれ断層に特徴的である礫の再配列も認められるため、実際の地震時変位には横 ずれ成分が含まれている可能性がある。よって、今回計測した最新活動に伴う上下変位量 1.2mは最小値である可能性がある。

図 74 松本盆地東縁断層北部と明科七貴地区における調査位置 国土地理院発行都市圏活断層図「信濃池田」(東郷・他, 1999)に加筆。

図 75 明科七貴地区におけるトレンチ掘削位置と測量図面 EW-1~EW-3 測線は地形断面測量の測線。

図 76 明科七貴地区における地形断面 縦軸は5倍強調。EW-1~EW-3 測線の位置は図 75 に示す。

図 77 明科七貴トレンチ壁面の写真 グリッドは1m間隔。

図 78 明科七貴トレンチ壁面のスケッチ グリッドは1m間隔。

図 79 明科七貴トレンチ北壁面における断層近傍の拡大写真

表4 明科七貴トレンチにおける放射性炭素同位体年代測定の結果 ここでは暦年較正年代として2 σの範囲を示している。

geo ID	beta ID	sample	type of material	Measured Rad	Measured Radiocarbon Age		adiocarbon Age	cal	d13C	Pretreatment
55557	488337	AKN-S01-1	wood	1260	30	1240	30	95.4% probability (61.3%) 684 - 780 cal AD (1266 - 1170 cal BP) (34.1%) 787 - 876 cal AD (1163 - 1074 cal BP)	-26.4	acid/alkali/acid
55558	488338	AKN-S02-1	wood	1300	30	1280	30	95.4% probability (95.4%) 662 - 774 cal AD (1288 - 1176 cal BP)	-26.3	acid/alkali/acid
55643	489161	ANN-W2-2	organic sediment	730	30	810	30	95.4% probability (95.4%) 1169 - 1270 cal AD (781 - 680 cal BP)	-20.3	acid washes
55742	490076	ANN-N05-1	organic sediment	490	30	500	30	95.4% probability (94.7%) 1398 - 1449 cal AD (552 - 501 cal BP) (0.7%) 1333 - 1336 cal AD (617 - 614 cal BP)	-24.3	acid washes
55749	490181	ANN-N16-1	organic sediment	2350	30	2380	30	95.4% probability (93.6%) 541 - 393 cal BC (2490 - 2342 cal BP) (1%) 704 - 695 cal BC (2653 - 2644 cal BP) (0.7%) 727 - 720 cal BC (2676 - 2669 cal BP)	-23.2	acid washes
55750	490182	ANN-N20-1	organic sediment	NA	***	2020	30	95.4% probability (95.4%) 107 cal BC - 58 cal AD (2056 - 1892 cal BP)	NA	acid washes

図 80 明科七貴トレンチにおける最近2回の活動の歴年代 年代測定結果は 0xCal v.4.3.2 (Ramsey, 2017)を基に暦年較正し、1σに対応 する確率分布を示した。較正曲線は IntCall3 (Reimer et al., 2013)を 使用した。 c)明科七貴地区におけるS波反射法地震探査

i)探查測線

長野県安曇野市の明科七貴地点において実施したS波反射法地震探査の詳細測線位置 を図 54 に示す。本地点においては、トレンチ掘削調査地点の近傍で、かつ、推定される断 層構造にできるだけ直交する長さ約 50mの測線を設定した。本測線はトレンチ調査地に隣 接する南側の舗装道路上に設定しており、道路形状に沿って測線中央部分で折れ曲がる平 面形態を呈する(図 81)。

図 81 反射法地震探査測線配置図(明科七貴調査地点) 青色線がS波反射法地震探査測線を示す。赤線はトレンチ掘削調査地点を示す。 安曇野市発行 1/2500 安曇野市基本図「No. 26」、「No. 36」を使用。

ii)探査データの取得

本地点における探査データの取得についても一般的な共通中間点重合法による反射法 地震探査(例えば、物理探査学会,2016)の現場データ取得作業に基づき、池田町会染地 区におけるS波反射法地震探査と同様にして行った。本地点で実施した探査の主なデータ 取得仕様を表5に示す。また、本探査で使用した機材は前述した会染花見で用いたものと 同じであり、探査機材の仕様は前掲の表2の通りである。

表5 主な探査データ取得仕様

	安曇野市 明科七貴
測線名	明科七貴
測線長	58m
受振点間隔	1m
発振点間隔	1m
展開方式	固定展開
振源	ポータブルバイブレータ
起振周波数	10-100Hz
スウィープ長	8秒
収録時間	2秒(コリレーション後)
サンプリングレート	0.5ms
垂直重合数	4回

iii)探査データの処理

取得した探査データに対して、一般的な共通中間点重合法(例えば、物理探査学会,2016) に基づいて、池田町会染地区におけるS波反射法地震探査のデータ処理とほぼ同様の、各 種のデータ編集・フィルタ処理を施し、地質および構造解釈に資する探査結果断面を得た。 これらの探査データ処理作業では池田町会染地区の探査データ処理と同様に、反射法探査 解析システムSeisSpace ProMAX (Halliburton Energy Services社製)を用いて、図12に 示す過程によって行った。

iv)探查結果

データ処理によって得られた重合断面図を図 82 に、マイグレーション処理を施した時 間断面図を図 83 に、マイグレーション処理を施した深度変換断面図を図 84 に示す。ここ で、各種のデータ処理に適用したパラメータを表6に示す。

図 82 明科七貴測線の重合断面図

図 83 明科七貴測線のマイグレーション時間断面図

図 84 明科七貴測線のマイグレーション深度変換断面図

	安曇野市 明科七貴
測線名	明科七貴
ジオメトリ情報	
CDP間隔	0.5m
CDP範囲	3-118
バンドパスフィルタ	
周波数帯域	5/10-90/100 Hz
振幅回復処理	
真振幅回復	-
AGCゲート長	500ms
デコンボリューション	
アルゴリズム	Zero phase spiking
ゲート長	250ms(ゼロオフセット)
オペレータ長	10ms
デコン後BPF	0/10-70/80 Hz
デコン後AGC	-
その他処理	-
速度解析	
間隔	10CDP
アルゴリズム	_
最大許容量	_
取八百五里	
CDP重合処理	
NMOーストレッチミュート	100%
マイグレーション	
アルゴリズム	FK
速度スケール	70%

表6 安曇	曇野市明科七貴地区0	つ反射法地震探査デー	タの処理に適用	したパラ	メータ表
-------	------------	------------	---------	------	------

5) 連動イベントの発生頻度と確率の試算

神城断層・木崎湖南方地点では予察的な変位履歴に基づけば、約1.2万年前以降に識別 された活動回数が4回もしくは6回と現時点で確定的ではないものの、いずれのケースで も地震時上下変位量が3m程度の活動が2回認められ、これらを連動型地震とみなすこと ができる。したがって、神城断層における連動型地震の平均再来間隔は5400年程度と見積 もられる。仮に、これらの連動イベントがポアソン過程に従うとした場合、神城断層全体 と松本盆地東縁断層北部との連動確率は、30年で0.6%と試算される。ただし、現時点で の変位履歴からみて、当該地点の神城断層では連動型地震と非連動型地震が時間的なクラ スタリング(集中期)を生じつつ、バイモーダルとなっている(頻度分布に2つのピークが ある)可能性もあり、これらを考慮した発生確率の評価方法も考案していく必要がある。

松本盆地東縁断層北部を含む連動イベントについて、現時点で中南部区間にデータの制 約があるため、詳細な連動範囲については現段階では言及できない。しかし、北隣の神城 断層との連動イベントについては、従来から最新活動に対応するとされた西暦 762 年の歴 史地震に伴い、少なくとも北部区間全体が連動した可能性を指摘することができる。これ は、従来から推定されていた最新活動時期が重なるという指標だけではなく、1)上記の 神城断層南端付近の木崎湖南方において3m程度の地震時上下変位量が確認されたこと、 2)池田町会染地区においても最新活動に伴い 1.7m程度の地震時上下変位量が生じた可 能性があることによる。

さらに、連動範囲は特定できないが、松本盆地東緑断層北部を含む連動イベントの発生 頻度については、現時点で次のように推定可能である。既述のように、松本盆地東縁断層 北部では過去約 1000 年前から約 8300 年前までに3回の活動が生じ、いずれも少なくとも 50km の断層区間が活動した連動型の地震イベントの可能性が指摘された。この場合、松本 盆地東縁断層北部を含む連動型地震の平均再来間隔は 3700 年程度と見積もられる。仮に、 これらの連動イベントがポアソン過程に従うとした場合、松本盆地東縁断層北部の連動確 率は、30 年で 0.8%と試算される。 6) 神城断層・大町市平中綱湖地区におけるボーリング調査、ジオスライサー調査

本地点は、2014年長野県北部の地震では活動しなかった神城断層上に位置し、青木湖と 中綱湖の間に位置している(図 85~87)。周辺では湖成段丘面及び河成段丘面が神城断層 の上盤側に分布しており、これらの段丘面を切る東側低下のバックスラストも併走する(図 87)。主に西側トレースの神城断層本体において、高時間分解能の湖成層に基づき高精度に 平均変位速度を推定するため、平成29年度に引き続き、断層の低下側と隆起側で各1孔の ボーリング調査を実施した。平成29年度に断層の低下側で実施したTAO-1孔は孔名をNKT-1孔に変更した。また、ボーリング地点から約500m南の地点において、最新活動時期と地 震時変位量、活動間隔等を推定するため、比高 1.5mの低崖を横断して群列ジオスライサ ー調査を実施した。以下では、それぞれの調査結果を報告する。

a)中綱湖地区におけるボーリング調査

本年度は、断層の隆起側で深さ約 33mまで(NKT-2 孔)、断層の低下側で深さ約 36mまで(NKT-3 孔)、2 孔を掘削した(図 88)。NKT-3 孔の掘削位置選定にあたっては、可能な限り撓曲変形帯から離れ、初生的な湖成層の堆積構造を確認し、かつ断層を堀抜き採取することに留意した。ボーリングコアの柱状図と写真を図 89~92、周辺の地形地質断面図を図 93 に示す。放射性炭素同位体年代測定の結果を表7に示す。

NKT-2 孔及び NKT-3 孔には、下位から大峰帯相当層の礫岩(7 b 層)、凝灰岩(7 a 層)、 不整合に覆う河川性砂礫層(4~6 層)、腐植質シルト・砂の互層からなる湖成層(2~3 層)、人工改変土層(1層)が露出した(図 89~93)。NKT-2 孔では大峰帯とみられる礫岩 と凝灰岩の境界に破砕帯を伴う明瞭な断層が認められ、その傾斜は 20°及び 40°である。 湖成層最下部の深度 18m付近には、凝灰岩が湖成層の砂層に衝上する小断層がみられる。 NKT-3 孔では砂礫層(6層)を切断する傾斜 20°程度の低角逆断層が認められ、上位の湖 成層中にも副次的な断層がみられた。湖成層の傾斜は NKT-2 孔では 10~20°程度であり、 これは逆断層の上盤側で生じた撓曲変形の一部と判断できる。一方、低下側の NKT-3 孔で は湖成層の傾斜は 20~30°程度と増傾斜しており、さらに下位の4~6層では 40~70° と変形の程度に累積性が認められる。これは、NKT-3 孔最下部付近の逆断層による撓曲変 形の一部と考えられる。

湖成層(3層)から木片、腐植質シルトなどの放射性年代測定試料が得られた。NKT-2孔 とNKT-3 孔で概ね調和的な年代値が得られ、約3.4~1.9万年前に堆積したと考えられる (図93)。最も新しい年代値として、NKT-3 孔から19390±70y.B.P.が得られた。炭素年代 の1 σに対応する較正暦年代は23501-23208 Cal BPである(図94A)。隆起側の湖成段丘 面の構成層は3層であり、段丘面は約24ka頃に形成されたと推定される。段丘面と湖成層 の比高から計測される累積上下変位量は約15mであるため、段丘面の年代を考慮して、平 均的な上下変位速度は0.6~0.7mm/yr程度と見積もられる。ただし、累積上下変位は撓曲 崖を挟んで計測される値であり、NKT-3 孔では調査地点よりも西側を通る逆断層が認めら れたため、ここで算出されたレートは最小値となる。

さらに調査地点から南方では、Une (1985) により神城断層の低下側の層序が橋梁工事に 伴うボーリングから推定されている(図 87)。それによると、地表から深度 12mの湖成層 中から 18,820±350 y.B.P.の年代値を示す木片が報告されている。炭素年代の1 σ に対応 する較正暦年代は23135~22345 Cal BP である(図 94B)。年代から判断して、この層準が 本調査のボーリングによる3層の湖成層に対比され、断層低下側では湖成層が南北方向に ほぼ水平に分布すると考えた場合、段丘面の累積上下変位量に12mを加算した27mが断 層帯本体の累積上下変位量とみなせる。よって、この累積変位量を24kaで除した1.1mm/yr が本地区における神城断層の平均的な上下変位速度と推定される。

以上から、中綱湖周辺における平均的な上下変位速度は、撓曲崖を挟んだ両側で湖沼性 堆積物と湖成段丘面を基準に0.68mm/yr以上と見積もられた。さらに、地表の撓曲崖だけ ではなく、西側の中綱湖底にも従来知られていなかった逆断層が新たに推定された。断層 低下側における既報の層序と年代を考慮して検討した場合、本地区における神城断層全体 の平均上下変位速度は1.1mm/yrと推定された。

b) 中綱湖地区におけるジオスライサー調査

本地点は中綱湖畔に位置し、比高 1.5m程度の西側低下の低崖地形がみられる。湖成堆 積物を基に神城断層の最近の活動時期を明らかにするため、この低崖を横断して長さ2m のジオスライサー9本(NKTG-1~9)と深さ2~3m程度の簡易式ボーリング4本(NKTE-1~4)を採取し(図 95)、地形地質断面図を作成した。調査地点周辺の地形断面を図 96、 ジオスライサーの写真を図 97、地形地質断面図を図 98 に示す。放射性炭素同位体年代測 定の結果をまとめて表8に示す。

調査地には、下位から斜面堆積物(7層)、シルト質砂礫層(6層)、腐植質シルト及び 砂の互層(5層及び4層)、腐植質シルト層(3層)、シルト層(2層)、人工改変土層(1 層)が露出した。低崖の直下付近で採取したNKTE-4孔の7層中には不明瞭ながら剪断面が みられ、これを低崖を形成した神城断層の一部と判断した。

過去の地震イベント層準は、地層の変形・上下変位の差異やアバットする堆積構造を基 に2回識別できる(図98)。新しいイベント(イベント1)は、4層以下の地層が西へ傾動 ないし撓曲変形するのに対して、上位の3層及び2層がアバットすることで認定される。 よって、イベント1は4層堆積後、3層堆積前に生じた。この変形と不整合関係は低崖よ りも西側で生じており低崖の形成に寄与するイベントでないため、上記のボーリング調査 で明らかになった中綱湖底を延びる逆断層によるイベントである可能性が高い。4層から 1290±30 y.B.P. (較正暦年代1σ:1275~1185 CalBP, 675~766 AD)が得られた。3層 から得た年代値はいずれも古く矛盾しており、2層の最上部から 690±30 y.B.P. (較正暦 年代1σ:675~570 CalBP,1275~1380 AD)が得られた。3層の古い年代試料は、地層の 堆積年代よりも古い木材や腐植がリワークして再堆積したと推定される。よって、イベン ト1は約1300年前~600年前(西暦675~1380年)に生じたと考えられる(図98~99)。 この発生年代は、2014 年長野県北部の地震以前に指摘されてきた神城断層の最新活動時期 と調和的であり(例えば、奥村・他,1998;地震調査研究推進本部地震調査委員会,2015)、 西暦 762 年もしくは 841 年の歴史地震(宇佐美・他, 2013) に対比可能である。また、長 野県北部の地震に伴う地震断層上のトレンチ調査で推定された西暦 1714 年正徳小谷の地 震(例えば、都司, 2003; Katsube et al., 2017)には対応しない。よって、本地点を含 む長野県北部の地震で未破壊の神城断層においては、最新活動は従来と同様に西暦 762 年 もしくは841年の歴史地震である可能性が高い。

古いイベント(イベント2)は、6層以下の地層が低崖を境として上下変位を生じ、その低下側を5層及び4層が埋積する地質構造によって認定される(図 98)。5層及び4層 と断層の直接の関係は明らかではないが、隆起側には相当層は確認されず低下側のみに堆 積する。また、層相が細粒の腐植質シルトと砂層の互層からなるため、6層堆積後に生じ たイベントの後、低下側を埋積して湖沼性の5層及び4層が堆積したと判断した。6層の 上面を基準として断層近傍の累積上下変位量は 1.7mと計測され、中綱湖底を延びる逆断 層の存在を考慮すればこの値は最小値となる。6層からは年代測定値は得られていないが、 下位の7層から最も新しい年代値として 17200±50 y.B.P. (較正暦年代1 σ : 20834~ 20642 Ca1BP)が得られた(図 98,表8)。一方、イベント2の上限を示す年代値として、 5層からは1320±30 y.B.P. (較正暦年代1 σ : 1292~1188 Ca1BP, 658~762 AD)が得ら れた。よって、イベント2は約1200年前以前に生じたと考えられる。ただし、7層の年代 が約 21ka と古く、5層との堆積間隙が大きいため、イベント2の発生年代はより詳細な検 討が必要である。

以上から、中綱湖のジオスライサー調査地点では、最近活動時期は西暦 675~1380 年に 生じたことが明らかとなった(図 99)。この年代は、2014 年長野県北部の地震前に指摘さ れてきた、神城断層の最新活動が西暦 762 年もしくは 841 年の歴史地震に対比される可能 性と調和的である。仮に、西暦 762 年の歴史地震に対比されるとした場合、現在までの経 過時間は 1257 年となる。また、2014 年地震の震源域で1つ前の活動とされる西暦 1714 年 正徳小谷の地震には対応しないことが明らかとなった。調査地点を含む神城断層南部の約 15km 区間は 2014 年地震では未破壊であり、今後の地震発生可能性や確率評価には、ここ で明らかとなった最新活動時期を用いることが妥当であると考えられる。さらに、この未 破壊区間が次に活動した場合、南へ連動してさらに大規模な地震を生じる可能性を引き続 き検討する必要が明確になった。

図 85 糸魚川-静岡構造線断層帯の活動区間。活動区間は地震調査研究推進本 部地震調査委員会(2015)による。Kondo et al. (2008)に加筆。

図 86 糸魚川-静岡構造線断層帯北部区間と調査位置。地震調査研究推進本部地 震調査委員会(2015)に加筆。

図 87 中綱湖周辺(大町市平)の神城断層と地形の分布、ボーリング調査位置。国土地理院発行の米軍撮影空中写真 R1785-39 に加筆。赤線は本研究による神城断層のトレース、ケバは低下側を示す。

 図 88 中綱湖周辺におけるボーリング調査およびジオスライサー調査地点。基図は 大町市発行の 1/2,500 都市計画図。図中の黒枠は図 95 に示す拡大図の範囲。
NKT-1 孔は、平成 29 年度に実施した TAO-1 孔と同じ。NKT-2 孔と NKT-3 孔が平 成 30 年度に新たに掘削したボーリング地点。NKTG-1 及び NKTE-1 はハンディ ジオスライサーおよび簡易式ボーリング。

図 89 NKT-2 孔(断層隆起側)の柱状図。掘削位置は、図 88 を参照。

図 90 NKT-2 孔のコア写真

図 90 NKT-2 孔のコア写真(続き)

図 91 NKT-3 孔(断層低下側)の柱状図。掘削位置は、図 88 を参照。

図 92 NKT-3 孔のコア写真

図 92 NKT-3 孔のコア写真(続き)

図 93 NKT-2 孔及び NKT-3 孔に基づく地形地質断面図

unit	sample name	type of material	Measured Radiocarbon Age (y.B.P.)		Conventional Radiocarbon Age (y.B.P.)		¹⁸ C (‱)	calendar year	Technique	Pretreatment	beta ID
3	NKTB2-02	wood	28980	140	28960	140	-26.11	95.4% probability (95.4%) 31642 - 30816 cal BC (33591 - 32765 cal BP)	AMS	acid/alkali/acid	509160
3	NKTB2-03	wood	33520	230	33480	230	-27.35	95.4% probability (95.4%) 36543 - 35021 cal BC (38492 - 36970 cal BP)	AMS	acid/alkali/acid	509161
3	NKTB3-01	wood	19400	70	19390	70	-25.82	95.4% probability (95.4%) 21650 - 21116 cal BC (23599 - 23065 cal BP)	AMS	acid/alkali/acid	510908
3	NKTB3-02	wood	19670	70	19640	70	-26.54	95.4% probability (95.4%) 21972 - 21466 cal BC (23921 - 23415 cal BP)	AMS	acid/alkali/acid	510909
3	NKTB3-03	wood	24950	90	24980	90	-23.13	95.4% probability (95.4%) 27379 - 26780 cal BC (29328 - 28729 cal BP)	AMS	acid/alkali/acid	510910

表7 NKT-2 孔及び NKT-3 孔の放射性炭素同位体年代測定の結果

図 94 放射性炭素同位体年代測定の較正暦年代。暦年較正は 0xCal v.4.3.2 (Ramsey, 2017)を使用し、較正曲線は IntCal13 (Reimer et al., 2013)を用いた。

図 95 中綱湖周辺におけるジオスライサー調査地点の詳細位置図。基図は大町市発 行の 1/2,500 都市計画図。NKTG-1~9 及び NKTE-1~4 はハンディジオスライサ ーおよび簡易式ボーリングの位置。黒線は地形断面測線の位置

図 96 中綱湖周辺におけるジオスライサー調査地点の地形断面図

図 97 ジオスライサー断面の写真。位置は図 95 を参照。

(陸側) E →

図 97 ジオスライサー断面の写真(続き)。位置は図 95 を参照。

図 98 群列ジオスライサーに基づく地形地質断面図

表8 中綱湖ジオスライサー調査における放射性炭素同位体年代測定の結果。 ここでは暦年較正年代として2σの範囲を示している。

unit	sample name	type of material	Measured Radiocar	bon Age (y.B.P.)	Conventional Radiocarbon Age (y.B.P.)		¹⁸ C (%)	calendar year	Technique	Pretreatment	beta ID
1	NKTG-1-0.48	organic sediment	690	30	690	30	-24.84	95.4% probability (68.9%) 1265 - 1312 cal AD (685 - 638 cal BP) (26.5%) 1358 - 1388 cal AD (592 - 562 cal BP) 	AMS	acid washes	516543
1	NKTG-6-0.76	wood	910	30	860	30	-27.74	95.4% probability (83.5%) 1150 - 1256 cal AD (800 - 694 cal BP) (9.9%) 1049 - 1084 cal AD (901 - 866 cal BP) (2%) 1124 - 1136 cal AD (826 - 814 cal BP)	AMS	acid/alkali/acid	516550
2	NKTG-1-0.66	wood	1950	30	1920	30	-26.59	95.4% probability (95.1%) 2 - 138 cal AD (1948 - 1812 cal BP) (0.3%) 199 - 204 cal AD (1751 - 1746 cal BP)	AMS	acid/alkali/acid	516544
2	NKTG-8-0.53	organic sediment	9870	30	9840	30	-26.6	95.4% probability (94.4%) 9326 - 9251 cal BC (11275 - 11200 cal BP) (1%) 9342 - 9333 cal BC (11291 - 11282 cal BP)	AMS	acid washes	516553
3	NKTG-1-1.25	organic sediment	14220	40	14190	40	-26.94	95.4% probability (95.4%) 15516 - 15153 cal BC (17465 - 17102 cal BP)	AMS	acid washes	516546
3	NKTG-1-1.02	organic sediment	14690	40	14650	40	-27.47	95.4% probability (95.4%) 16045 - 15722 cal BC (17994 - 17671 cal BP)	AMS	acid washes	516545
4	NKTG-1-1.50	wood	1330	30	1290	30	-27.49	95.4% probability (95.4%) 664 - 770 cal AD (1286 - 1180 cal BP)	AMS	acid/alkali/acid	516547
5	NKTE-2-1.67	wood	1360	30	1320	30	-27.56	95.4% probability (73%) 652 - 722 cal AD (1298 - 1228 cal BP) (22.4%) 740 - 768 cal AD (1210 - 1182 cal BP)	AMS	acid/alkali/acid	518640
5	NKTG-1-1.68	organic sediment	17900	50	17860	50	-27.64	95.4% probability (95.4%) 19896 - 19491 cal BC (21845 - 21440 cal BP)	AMS	acid washes	516548
6	NKTG-1-1.80	wood	20510	60	20490	60	-26.1	95.4% probability (95.4%) 23017 - 22431 cal BC (24966 - 24380 cal BP)	AMS	acid/alkali/acid	516549
7	NKTE-4-2.60	plant material	17200	50	17200	50	-25.01	95.4% probability (95.4%) 18987 - 18614 cal BC (20936 - 20563 cal BP)	AMS	acid/alkali/acid	518641
7	NKTG-6-1.56	organic sediment	18440	50	18410	50	-26.59	95.4% probability (94.6%) 20515 - 20141 cal BC (22464 - 22090 cal BP) (0.8%) 20118 - 20098 cal BC (22067 - 22047 cal BP)	AMS	acid washes	516552
7	NKTG-6-1.46	organic sediment	19930	60	19880	60	-27.92	95.4% probability (95.4%) 22196 - 21746 cal BC (24145 - 23695 cal BP)	AMS	acid washes	516551

OxCal v4.3.2 Bronk Ramsey (2017); r:5 IntCal13 atmospheric curve (Reimer et al 2013)

 図 99 中綱湖ジオスライサー調査による神城断層の最新活動時期。暦年較正は 0xCal v.4.3.2 (Ramsey, 2017)、較正曲線は IntCal 13 (Reimer et al., 2013)を用いた。各試料の年代値は1 σの範囲を示す。AD762 と AD841 は それぞれ歴史地震を示す。
7) 神城断層・木崎湖南方地点における変位履歴の再検討

木崎湖南方地点は神城断層の南端付近に位置する(図 86, 100)。産業技術総合研究所は 2006年に同地点でジオスライサー・ボーリング調査を実施した。その成果の概略は奥村・ 他(2007)において速報として報告され、湖沼性の細粒堆積物に生じた撓曲変形をもとに 過去3~4回の古地震イベントが指摘されている。平成29年度は既存資料の再検討によ って、従来は指摘されていなかった深部の低角逆断層をみいだし、過去5~6回の古地震 イベントを識別した。その結果をもとに、予察的な時間-変位ダイヤグラムを作成し、地 震時変位量に基づく連動型イベントの識別と連動履歴の推定、ポアソン過程による連動型 地震の発生確率の試算をおこなった(近藤, 2018)。

今年度は、逆断層上盤側で生じる変形を面的に把握し、より正確な地震時変位量を計測 するため、調査地点周辺を対象にドローンによるレーザ測量を実施し、0.1mの精密な数値 標高モデル(DEM)を作成した。表9及び表10にドローンレーザ測量の仕様、図101に0.1 mDEM に基づく地形陰影図とボーリング掘削位置、図102に地形断面の測線位置、図103 に地形断面を示す。さらに、深さ20m程度のボーリングを4孔追加することにより、2006 年当時に復元された地形地質断面をさらに仔細に検討し、地下20m程度までの断層形状、 古地震イベントの認定、活動時期と地震時上下変位量を再検討した。地層の分布が不明な 部分については、現状のコアでみられる地層の傾斜や断層との関係、変形の累積性を考慮 して、地層の分布を推定した。ボーリングコアの写真を図104~107、地形地質断面図を図 108に示す。

a) イベント層準の認定と地震時上下変位量

調査地域には、地表から深さ約 30m程度まで湖沼性の細粒堆積層が厚く堆積し、それら を切断する東傾斜の低角逆断層が確認された(図 108)。ここでは、層相をもとに各地層を ユニット 50~1200 に区分した。逆断層は、明瞭な変位と上盤側の地層の顕著な変形を伴 い、各ボーリングコアで連続的に確認できるものを主断層として3条を認定し、F-1~F-3 とした。その他に確認された多数の逆断層は副次的な断層として断面図に記入した。F-1 か ら F-3 の逆断層は、地表下 10m程度より深部でユニット 800 以下の地層を明瞭に切断す る。地形地質断面図から読み取った断層の傾斜は 10~20°である。一方、800 より上位の 地層では東側隆起の撓曲変形を生じ、明瞭な剪断は認められない。今回の補足調査によっ て、地層の変位・変形の程度や断層との切断・被覆関係をもとに、約 1.2 万年前以降に確 実な古地震イベントを5回と不確かなイベントを2回認定した。以下では、それらのイベ ントを新しいものからイベント1~7とし、イベント毎に認定の根拠と上下変位量につい て記述する。

i) イベント1

イベント1はユニット 100 堆積後、ユニット 70 堆積前に認定した。ユニット 100 は調 査地で連続的に分布する腐植質シルト層であり、Bor-6 から Bor-3 の間で東側隆起の撓曲 変形を生じている。その低下側では、KZK-10 より西側で上位のユニット 70 とユニット 50 がユニット 100 の変形に対してアバットして堆積する。ユニット 70 はシルトー砂からな る後背地性の堆積物であり、低下側を埋積して分布する。よって、ユニット 100 堆積後、 ユニット 70 堆積前に東側隆起の撓曲変形を生じるイベントが生じたことが確実である。 地表の低崖地形を基に上下変位を計測した場合、上下変位が 3.1mと計測された。一方、 ユニット 100 の上面を基準とした場合は、3.5mと計測される。ドローン・レーザによる周 辺の地形計測では、K4 測線で 3.2mの上下変位が計測されており、K4 測線付近を頂部とす るバルジ状の上盤側変形が認められる。ここでは、ジオスライサー・ボーリング調査によ って明らかとなった、最新活動以降に断層下盤側で堆積した埋積層(ユニット 70 及び 50) の層厚も考慮し、イベント1に伴い 3.5mの上下変位が生じたと判断した。

ii) イベント2

イベント2はユニット 200 堆積後、ユニット 150 堆積前に認定した。ユニット 200 は腐 植質シルト層からなり、層厚が 20cm 程度と薄いながらも調査地に連続的に分布する。隆起 側では Bor-3 から GS-1 までは対比が容易で連続的に分布し、概ね水平に堆積する。この地 層も Bor-6 から Bor-3 の間で東側隆起の撓曲変形を生じている。一方、上位のユニット 150 は後背地性のシルトー砂層であり、ユニット 200 の変形をアバットして低下側を埋積し、 東へ向かって層厚を減じて GS-4 から GS-3 の間で殲滅する。よって、ユニット 200 堆積後、 ユニット 150 堆積前に東側隆起の撓曲変形を生じるイベント 2 が生じたことが確実である。 ユニット 200 の上面を基準に、3.9mの累積上下変位量が計測された。イベント1による 3.5mを差し引きして、イベント2に伴う上下変位は 0.4mとなる。

iii) イベント3

イベント3はユニット500 堆積後、ユニット400 堆積前に認定した。ユニット500 は腐 植質シルト層により構成され、調査地西端のBor-2から中央付近のBor-4付近まで連続し て分布する。さらに東側ではユニット600~800 相当の腐植質シルトと収斂し、明瞭に分布 を追うことは困難であるが、ユニット500 堆積時には上面が概ね水平であったと考えられ る。その上位には、ユニット400の砂層が厚く堆積し、内部構造の傾斜から判断して、下 位のユニット500 に対してアバットする。ユニット400 は、ユニット500 ないし600~800 が形成した撓曲崖をオーバーラップして隆起側にも堆積する。よって、ユニット500 堆積 後、ユニット400 堆積前に東側隆起の撓曲変形を生じるイベントが生じたことが確実であ る。ユニット500 の上面を基準に、5.6mの累積上下変位量が計測された。イベント2以降 の累積変位量3.9mを差し引きして、イベント3に伴う上下変位は1.7mとなる。

iv) イベント4

イベント4はユニット 600 堆積後、ユニット 570 堆積前に認定した。ユニット 600 は調 査地で連続よく対比可能な腐植質シルト層であり、上位のユニット 400 にみられる撓曲変 形よりも累積的に大きく変形する。上位にはユニット 530~570 の後背地性堆積層がユニ ット 600 にアバットして堆積する。ユニット 550 はチャネル状の分布を示し、断面形状か ら判断して、概ね南北方向に流下した小規模なチャネル堆積物である。一連の河川性堆積 層の最下部を構成するユニット 570 は Bor-2 では下位の 600 と整合的であるが、ユニット 600 ヘアバットして東へ層厚を減じており KZK-10 孔までに殲滅する。これらのユニット 530~570 は、南北方向へ流れる河川性の堆積層であり、初生的にほぼ水平な堆積上面であ ったと考えられる。そのため、ユニット 600 を変形させるイベントが生じた後、低下側を ユニット 530~570 が埋積し、その後に生じた新しいイベント1~3 によってさらに変形 を受けたと判断出来る。よって、ユニット 600 堆積後、ユニット 570 堆積前に東側隆起の 撓曲変形を生じるイベントが生じたことが確実である。ユニット 600 の上面を基準に、8.5 mの累積上下変位量が計測された。イベント3以降の累積変位量 5.6mを差し引きして、 イベント4に伴う上下変位は 2.9mとなる。

v) イベント5

イベント5はユニット700 堆積後、ユニット650 堆積前に認定した。ユニット700 は低 下側のKZK-9 以西を埋積する腐植質シルト層であり、上位のユニット600 よりも累積的に 大きく変形する。東への連続性は不明瞭であるが、後述する年代値から判断して、隆起側 にほぼ水平に堆積するユニット600~800 に収斂するとみられる。ユニット700 堆積時に は、他の腐植質シルト層と同様に初生的に概ね水平に堆積したと考えられ、その上位のユ ニット650 は700 に対してアバットして堆積する。よって、ユニット700 堆積後、ユニッ ト650 堆積前に東側隆起の撓曲変形を生じるイベントが生じたと推定される。ただし、ユ ニット700 は、後述するユニット800 を変形させるイベントの後、低下側を埋積した地層 の一部であった可能性もある。また、イベント5の発生後、約8400 年前から約5600 年前 にかけて地層の欠落が認められる。そのため、ここではイベント5の信頼性を相対的に低 いものと判断した。ユニット700 の上面を基準に、10.4mの累積上下変位量が計測された。 イベント4 以降の累積変位量 8.5mを差し引きして、イベント5 に伴う上下変位は 1.9m となる。

vi) イベント6

イベント6はユニット800堆積後、ユニット750堆積前に認定した。ユニット800は調 査地に連続的に分布する腐植質シルト層であり、隆起側ではユニット600~800の一連の 地層としてマージする。上位のユニット750は河川性の砂礫層で、下位のユニット800に 対してアバットして堆積し、層厚を東へ減じながらKZK-9付近で殲滅する。よって、ユニ ット800堆積後、ユニット750堆積前に東側隆起の撓曲変形を生じるイベントが生じたこ とが確実である。ユニット800の下面を基準に、11.0mの累積上下変位量が計測された。 イベント5以降の累積変位量10.4mを差し引きして、イベント6に伴う上下変位は0.6m となる。

vii) イベント7

イベント7はユニット1000(ユニット1020及び1040)堆積後、ユニット950堆積前に 認定した。ユニット1000は極細粒砂~粗粒砂~シルトの互層であり、KZK-8および9では 明瞭な逆断層によって切断される。特に断層直近では傾斜が50°程度まで大きく変形し、 本層が撓曲変形を生じつつ逆断層による剪断を受けたことを示す。ユニット1000を構成 するサブユニット1020は特に細粒堆積物を主体としており、初生的にほぼ水平に堆積し たと判断出来る。一方、上位のユニット950~850は細礫を含む河川性の砂礫層で、断層の 低下側と隆起側に広く分布する。ただし、ユニット950のみが低下側で厚く堆積し,堆積 前に下位のユニット1020が高度差を生じていたことを示す。以上から、ユニット1020堆 積後、ユニット950堆積前に東側隆起の撓曲変形を生じるイベントが生じたと推定した。 ただし、このイベントの認定根拠は低下側で厚い地層の存在であり、相対的に信頼性は低 い。ユニット1020の上面を基準に、11.5mの累積上下変位量が計測された。イベント6以 降の累積変位量11.0mを差し引きして、イベント7に伴う上下変位は0.5mとなる。

113

b) イベント発生年代

イベント1~7について、それぞれのイベント層準前後の地層から得られた放射性炭素 同位体年代測定値を基に各イベントの年代を特定した。年代測定の結果は 2006 年調査当 時の試料と今回実施した合計 31 試料である。地層の年代として採用する年代値は木片、バ ルクの腐植質シルトなど試料種及び層序と年代値の矛盾を考慮した。さらに、地層の堆積 時間を考慮し、急速に堆積する河川性の砂層や礫層は原則として最も新しい年代値を代表 値とした。湖沼性ないし沼池性のようなゆっくりと堆積した腐植質シルト層の場合は、年 代値と層序に矛盾がない限り、最も新しい年代値と最も古い年代値の範囲を地層の年代と した。断層の上盤側に位置する KZK-8 以東のユニット 600~800 は、下盤側の3つの腐植質 シルト層が収斂し、年代値の矛盾はないものの約 4000~9000 年前と幅広い年代値を示す。 そのため、上盤側のユニット 600~800 から得た年代値は古地震イベントを特定する年代 値としては考慮しなかった。各ユニットから得た年代の 1ヶに対応する較正暦年代と確率 密度分布、各イベントの年代推定幅をを図 109 に示した。

c)木崎湖南方地点における変位履歴と連動確率の試算

今年度の調査によって認定された7回の古地震イベントの年代と上下変位量を基に、時間-変位ダイヤグラムを作成した(図 110)。平成29年度と異なる点は、精緻化した地形地質断面図を基により多くのイベントが認定され、イベントの発生年代がより詳細に特定された点にある。上述のように約5600年から約8400年前は顕著な堆積間隙があるため、これ以降に生じたイベント1~4の平均発生間隔を求めると、3500年間ないし2900年間を3回で除して、970~1170年の平均発生間隔が求まる。最新活動時期をイベント1の970~1370年前とした場合、BPTモデルに基づく今後30年以内に生じる地震発生確率は6~17%程度と極めて高く、地震後経過率は80~140%となる。

この地震発生確率は、木崎湖南方地点を含み、2014 年長野県北部の地震で未破壊であっ た神城断層の未破壊区間の地震発生可能性を示している。そのため、次の大地震時におい て、南に隣接する松本盆地東縁断層以南を含む区間と連動した場合の地震発生確率は、別 途検討をおこなう必要がある。

再検討した時間-変位ダイヤグラムに基づき、地震時上下変位量が3mを超える連動型 イベントとして認定したものは、イベント1及びイベント4の2回であり平成29年度の 推定と変わりはない。いずれのイベントも断層の傾斜を20°前後とした場合、ネットスリ ップはそれぞれ10.2mと8.5mとなる。これらを松田・他(1980)により地震断層長に換 算すれば、イベント1の地震断層長は100km以上、イベント4が85km以上となる。よっ て、これら2つのイベントは神城断層単独ではなく、少なくとも松本盆地東縁断層北部と それ以南の断層区間と連動したことが確実である。

さらに、発生年代が高精度化されたことにより、発生間隔の見積もりが改訂された。今 年度の成果によって、それぞれの連動型イベントの発生年代は、約1000~1400年前および 4300~4500年前であり、これらの発生年代から求まる連動間隔は2900~3500年となる。 また、イベント1を西暦762年の歴史地震に対比した場合、連動間隔は3100~3300年と推 定幅がより狭まった。

これらの連動型イベントの発生間隔を基に、ポアソン過程に基づく連動確率を試算した

場合、今後 30 年以内に生じる連動型イベントの発生確率は 0.9~1.0%と求まる。また、 歴史地震に対比した場合の連動間隔を用いても、今後 30 年間に生じる連動型イベントの 発生確率は 0.9~1.0%と試算される。一方、過去 1.4 万年間に 2 回の連動型イベントが生 じたと考えた場合、連動間隔は 7000 年程度となるため、今後 30 年間に生じる連動型イベ ントの発生確率は 0.4%程度と試算される。

さらに、イベント1~4の発生が 2900~3500 年間に生じ平均発生間隔が 970~1170 年 であるのに対して、イベント6と7は約 5600~14000 年前の期間に2回のみ生じている。 後者の約 8400 年間には顕著な地層の欠落を含んでいるものの、累積上下変位量や堆積構 造から判断して、この期間に未検出のイベントが多数発生したとは考えにくい。よって、 最近4回のイベントは相対的に短い間隔で発生し、少なくともイベント6と7の2回のイ ベントは長い時間間隔で発生したと解釈できる。このように考えた場合、約 5600 年前以降 に生じた最近4回は活動の集中期(例えば、Walalce, 1987; Sieh et al., 1989; Rockwell et al., 2000)を示すと判断できる。

これまでの地震本部による活断層の長期評価では、BPT モデルのばらつき α という形で 活動間隔のゆらぎが評価されてきた。ただし、そのばらつきの成因までは特定されている わけではなく、連動型地震と時間的クラスタリング(活動の集中期)を同時に考慮した評 価は実施されていない。今後、連動型地震の発生確率の算出方法については、時間的なク ラスタリング(活動の集中期)を考慮した場合や、連動型地震と非連動型地震の地震発生 パターンを考慮した BPT モデルに基づく試算など、引き続き検討をおこなう。

図 100 木崎湖南方地点におけるジオスライサー・ボーリング調査の位置。本研 究で再検討した木崎湖南方地点は、奥村・他(2007)の位置。Taira site は丸山・他(2010)によるトレンチ・ボーリング地点。基図は丸山・他 (2010)を引用。

	項目		仕様	
	モデル		ZION FH1440 プロトタイプ	
機体本体	機体形式	ローター数	6枚	
	機体寸法	ローター径	665mm	
		直径	2103mm	
		軸間	1440mm	
		高さ	703mm	
	機体重量	kg	11.9kg(機体のみ)	
			15.9kg(バッテリー含む)	
	機体フレーム	材質	カーボンファイバー	
	オートパイロットシステム	フライトコントローラー	enRoute Ridge Hawk	
		自動航行装置	あり	
		飛行ログ機能	あり	
			位置情報、高度、時刻、飛行姿勢	
		その他	自動帰還機能	
飛行性能	最大離陸重量		24.9kg	
	積載可能重量		13.0kg(バッテリー込)	
			9.0kg(バッテリー外)	
	最大飛行時間	ホバー	25分	
	最大飛行距離	km	10km	
	飛行速度	水平	12m⁄s	
		上昇	5m⁄s	
	最高到達高度		150m	
	耐風性能		8m∕s	
通信	プロポ	メーカー	エンルート(TX2)	
		使用周波数帯	2.4GHz	
		電波到達距離	1.000m	
その他	安全性能	灯火	LEDによる前方・後方向の灯火装備	
		自動帰還機能①	バッテリー残量規定値以下での帰還	
		自動帰還機能②	プロポ通信断での帰還	
		自動帰還機能③	飛行距離制限設定値(ジオフェンス)オーバー時の帰還	
	映像伝送	メーカー、型式	送信機WTW-TR23T/受信機WTW-TR23R	
		通信周波数帯	2.4GHz	
		通信距離	200m~300m(見通し)	
		映像伝送形式	SD	
		重量	150g	

表9 ドローンレーザ計測の仕様

表 10 ドローンレーザ計測の計測諸元

対地高度	70m	コース間重複度	0.5
対地速度	3m∕s	スキャン回数	56ライン/s
レーザー照射レート	550kHz	スキャン回数角度	15°~345°

図 101 木崎湖南方地点におけるドローンレーザによる詳細地形陰影図。陰影図 は 0.1mメッシュの DEM から作成。高さは 3 倍に強調。赤字が本事業によ るボーリング掘削位置、青字が奥村・他(2007)によるジオスライサー掘 削位置、黒字がボーリング掘削位置を示す。赤線は本研究による活断層ト レース。

図 102 木崎湖南方地点における地形断面の測線位置。K1 から K6 が地形断面の 測線位置を示す。

図 103 ドローンレーザ DEM による地形断面。高さは 10 倍に強調。測線位置は 図 102 に示す。

図 103 ドローンレーザ DEM による地形断面(続き)。高さは 10 倍に強調。測線 位置は図 102 に示す。

図 104 KZK-7 孔のボーリングコア写真。掘削位置は図 101 に示す。

図 105 KZK-8 孔のボーリングコア写真。掘削位置は図 101 に示す。

図 105 KZK-8 孔のボーリングコア写真(続き)。掘削位置は図 101 に示す。

図 106 KZK-9 孔のボーリングコア写真。掘削位置は図 101 に示す。

図 107 KZK-10 孔のボーリングコア写真。掘削位置は図 101 に示す。

図 108 木崎湖南方地点におけるジオスライサー・ボーリング調査の再検討に基 づく地形地質断面図

 図 109 木崎湖南方地点における古地震イベントの較正暦年代。暦年較正は 0xCal v.4.3.2 (Ramsey, 2017)、較正曲線は IntCal 13 (Reimer et al., 2013) を用いた。各試料の年代値は1 σ の範囲と確率密度分布を示す。黄色の網 かけはイベント年代の範囲、灰色の網かけは地層の欠落期間を示す。細字 のイベントは信頼性が相対的に低いイベント。

図 110 木崎湖南方地点における時間-変位ダイヤグラム。灰色の年代区間は、地 層が欠落し時間間隙となっている期間。カラーのボックスは、イベント年 代の推定幅(1 g)。

8) 松本盆地東縁断層南部・安曇野市豊科高家地区におけるトレンチ調査

本地区では、松本盆地東縁断層南部の最新活動時期、最新活動に伴う横ずれ量を推定す るための三次元的にトレンチ・ピットを掘削した(図 111)。断層に直交方向に掘削したト レンチ、極浅部の断層構造を把握するためのボーリング掘削調査、S波反射法地震探査に ついては、文部科学省委託事業平成 30 年度「内陸及び沿岸海域の活断層調査」において実 施したため、詳細は当該事業の報告書に記載し、ここでは横ずれ量を推定したピットを中 心に記載をおこなう。

調査地では、河成段丘面に形成された比高約2mの低断層崖が約1kmの区間にわたり南 北走向に延びる(図 111, 112)。トレンチはこの低断層崖を横断して掘削し、壁面には下 位から鮮新-更新統の大峰帯、扇状地礫層、人工改変土層、自然堆積層を切断する高角な 断層が露出した。トレンチ壁面の写真とスケッチを図 113 及び図 114 に示す。また、ここ では詳細を省略するが、断層の極浅部形状を確認するため、4孔の群列ボーリングとS波 反射法地震探査を実施した。その結果、トレンチの断層に連続する主断層は東傾斜 75°程 度であり、深さ 20m程度では鮮新-更新統の大峰帯と第四系の扇状地礫層が断層関係で接 することが明らかとなった。統合解釈断面図を図 115 に示す。

トレンチ壁面では最新活動に伴うイベント1が認められる。低断層崖の基部に露出した 断層は扇状地礫層(5 b 層)と大峰帯を明瞭に切断し、上端を人工改変土層である1 a 層 に覆われる(図 114)。よって、イベント1は5 b 層堆積以降に生じたことが確実である。 5 b 層からは年代測定試料は得られていないが、南壁面のチャネル充填堆積物である4 b 層から1420±30 y.B.P.が得られた。この年代に対応する1 σ の較正暦年代は、1300~1338 Ca1BP(612~650 AD)である。4 b 層が最新活動によって切断されたことは確実であるた め、最新活動時期はこの年代以降となり、西暦 612 年以降と考えられる。

隆起側に位置する断層の東側ではトレンチ北壁面、東壁面、南壁面に、細粒な砂・シル ト層からなるチャネル充填堆積物(4層)が露出した。このチャネルは概ね北東方向の走 向を示すが、断層低下側のトレンチ壁面には露出しておらず、断層とは直接は接していな い。そのため、チャネルの北西縁が断層により左横ずれ変位を受けており、低下側ではト レンチよりも南方に存在する可能性があった。そこで、断層の低下側で長さ20m程度のピ ットを南北方向に掘削した。ピット壁面の写真とスケッチを図116及び図117に示す。断 層低下側でみられるチャネルの走向は、西側壁面の2箇所と底盤の1箇所で測定し、N26° ~35°W程度であった。ただし、この走向は東西壁面間の局所的な走向であり、蛇行する 河道の一部の走向を示すと判断した。さらに、チャネルの古流向を確認するため、隆起側 と低下側でそれぞれ小規模なチャネル追跡ピットを掘削し、チャネル充填堆積物の北縁な いし北西縁の平面位置を確認した(図118)。

チャネルの北縁は、断層の低下側では明瞭に認められ、その走向はN70°EからN76° Eである。一方、断層の隆起側ではチャネル充填堆積物は、チャネル追跡ピットの範囲に 薄く広がって堆積しており、北縁を正確に把握することが難しい。隆起側では人工改変土 層がチャネル堆積物を切っているため、人工改変の影響もみられる。そのため、隆起側で はチャネルの走向を2ケース設定した。1つめは、低下側のチャネル走向を隆起側でも同 じと仮定し、トレンチ北壁面でみられるチャネル西縁を通る外挿線を設定した。2つめと しては、隆起側ではチャネルの走向が初生的に低下側と異なり蛇行していた場合で、追跡 ピット東側壁面でみられるチャネル底の北端と、トレンチ北壁面のチャネル西縁を結んだ 外挿線を設定した。

2つのケースをもとに左横ずれ量を計測した場合、それぞれ 10.6mと 3.6mとなる。現 状では、いずれの信頼性が高いか判別できないため、両者の値が取る範囲を誤差を含む最 小値と最大値とし、中央値を最良推定値とした場合、横ずれ量は 7.1m±3.6mとなる。上 述のように、このチャネル充填堆積物は 7世紀以降に形成されており、最新活動による地 震時横ずれ変位量と判断できる。今後、より正確にチャネルの流向や分布を明らかにする ことによって、正確な横ずれ量とネットスリップが計測可能になると期待される。

図 111 松本盆地東縁断層南部の豊科高家地区、島内地区の位置。基図は国土地理 院発行都市圏活断層図「松本」を使用。

図 112 豊科高家地区におけるトレンチ・ピット掘削位置

図 113 豊科高家地区におけるトレンチ壁面の写真

図 114 豊科高家地区におけるトレンチ壁面のスケッチ

図 115 豊科高家地区におけるトレンチ・ボーリング・反射断面統合解釈図

図 116 豊科高家地区におけるピット壁面の写真

図 117 豊科高家地区におけるピット壁面のスケッチ

図 118 豊科高家地区におけるチャネル堆積物に基づく横ずれ量の推定

9) 松本盆地東縁断層南部・松本市島内地区におけるボーリング調査

島内地区では、横ずれ量を推定するための予察的なボーリング調査を実施した。調査地 周辺では、比高1.5m程度の東側隆起の低断層崖が南北に延び、近藤・他(2006)及びKondo et al. (2008)により横ずれ変位地形と基に最新活動に伴う約7mの横ずれ量が計測され ている。ボーリングは低断層崖を挟んで断層の隆起側と低下側で深さ5m程度を8孔掘削 した(図119,120)。従来は、最新活動時期は周辺に分布する遺跡の年代に基づいており、 本研究では絶対年代により最新活動時期を推定し、横ずれ量を地質学的に検討することを 目的として調査を実施した。ボーリング柱状図を図121、ボーリングの地質に基づくパネ ルダイアグラムを図122、周辺の地形発達史を考慮した横ずれ量の予察的検討結果を図123 に示す。

断層の隆起側では、西から東へ流下する旧河道が扇状地性段丘面(L2面:図119)に残存する。一方、低下側ではこれに連続する上流側の微地形は存在していない。そこで、低下側で埋没する旧河道堆積物を探索するため、断層の隆起側で41、低下側で41を旧河道の内側と外側で掘削した。隆起側のボーリング(SMU-5~8)では表土の直下に扇状地礫層が分布する(図121)。一方、低下側のボーリング(SMU-1~4)では、表土より下位に細礫、砂、腐植質シルトからなる細粒な堆積層(A~C層)が分布している。A層は主に断層の低下側である西側にのみ分布し、B層及びC層は低下側でSMU-31、隆起側でSMU-71 付近にのみ局所的に分布する。これらの層相と分布から判断して、断層の低下側を埋積した地層(A層)と旧河道の堆積層(B~C層)に区分した。扇状地礫層の上面高度は、断層を境に約2mの西側低下の断層変位を示す(図122)。断層低下側のSMU-31では、C層基底には50cm程度の腐植質シルト層がみられるが、隆起側のSMU-511および71では対応する腐植質シルト層はみられない。ただし、SMU-71のみでC層に対応する砂質シルト層が確認され、SMU-31との間に左横ずれ変位が生じた可能性が示唆される。現段階では、放射性炭素同位体年代測定を実施できていないが、今後、年代測定の結果を含めて詳細を検討し、イベント発生年代や地震時変位量を明らかにする。

図 119 松本市島内地区周辺の活断層と地形分類図。黒枠が図 120 の調査範囲。 Kondo et al. (2008)に一部加筆。

図 120 松本市島内地区におけるボーリング掘削位置 基図は国土地理院の地理院地図を使用。

図 121 松本市島内地区におけるボーリング柱状図

図 122 松本市島内地区におけるパネルダイアグラム。縦軸は5倍強調。

図 123 松本市島内地区における地形発達史と横ずれ量の予察的検討

- 10) 松本盆地東縁断層南部における反射法地震探査
- a)探查測線

糸魚川-静岡構造線活断層系は本州の中央部を南北に横断する全長約160kmの活断層系 であり、そのうち、安曇野市から茅野市に至る長さ約45kmの中北部区間(明科-諏訪湖南 方区間)は左横ずれが主体であると考えられている(例えば、地震調査研究推進本部地震 調査委員会,2015)。同断層系中北部区間は.松本盆地東縁断層(明科以南)、牛伏寺断 層、岡谷断層、諏訪湖南岸断層群などといった主に北北西-南南東走向の断層によって構 成されている(例えば、地震調査研究推進本部地震調査委員会,2015)。ただし、これら の主要な断層に斜交して、松本市の北部では北北東-南南西走向の全長約5kmの断層が分 布する。本研究では、上記の松本盆地東縁断層(明科以南)と断層長の短い北北東-南南 西走向の断層を探査の対象とした。

本探査は2測線(田沢測線および岡田測線と名付けた)において実施した(図124)。田 沢測線は長野県安曇野市徳次郎周辺から大口沢周辺に至る約4.3kmの区間であり(図125)、 岡田測線は長野県松本市浅間温泉西方から岡田神社周辺に至る約1.3kmの区間である(図1 26)。それぞれの探査測線は対象とする活断層に対してほぼ直交するように設定した。

図 124 反射法地震探査測線配置図(田沢測線および岡田測線)。基図は地理院地図を使用。

図 126 岡田測線の詳細測線図。基図は地理院地図を使用。

b)探査データの取得

データ取得は共通中間点重合法(例えば、物理探査学会,2016)によって行った。発震 は田沢測線では中型バイブレーター震源(米国IVI社製のEnviro Vibe;図127)、岡田測線 では中型油圧インパクター震源(株式会社地球科学総合研究所製のJMI-200;図128)で行 い、標準発震点間隔は10m(田沢測線)、5m(岡田測線)である(表11)。受振器は固有 周波数15Hzのもの(米国Geospace社製のOMNI-2400)を用いて、標準受振点間隔が10mとな るように受振点を配置し、同時収録チャネル数は130チャネル(田沢測線)、140チャネル(岡 田測線)とした。データ記録は独立型レコーダー(米国Geospace社製のGSR/GSX)を用いて、 サンプリング間隔0.5msecで行った。

田沢測線および岡田測線で実施した反射法地震探査の主なデータ取得仕様をまとめて 表11に、本探査で使用した機材の仕様を表12に示す。

図 127 中型バイブレーター震源

図 128 中型油圧インパクター震源

項目	内容		備考	
探查手法				
波動種別	Р波			
測線数	2			
測線名	田沢測線			
測線長 (上段:測定	4,633m	1,390m	予察調査の結果を踏まえ、発	
下段:解析)	4,330m	1,325m	注者と協議の上、決定した	
標準発震点間 隔	10m	5m	施設管理者の許可条件、交通 状況、隣接家屋等の状況に応 じ、発震をスキップ	
標準受振点間 隔	10m	10m	障害物がある場合は受振器設 置位置をずらし設置した	
標準収録 チャンネル数	130 チャンネル (展開長 : 標準 1.3km)	140 チャンネル (約 1.4km 固定展 開)	田沢測線については、 震源の東側:100CH、西側: 30CH	
標準垂直重合 数	10 回	14 回	現地テストに基づき決定した	
標準スイープ 長	16 秒	_		
スウィープ周 波数	10-100Hz	_		
収録記録長	20 秒(相互相 関前) 3 秒(相互相関 後)	3秒		
サンプリング 間隔	0.5msec			
収録様式	SEG-D			
震源	中型バイブレー ター 1台	油圧インパクター 1 台		
受振器	速度型地震計 (固有周波数:15Hz、3個グルーピ ング/1地点)		OMNI-2400 (GEOSPACE 社製)	
収録装置	独立型デジタルレコーダー (A/D 分解能:24ビット)		GSR/GSX (GEOSPACE 社製) GPS 機能付独立型収録装置	

表 11 主な探査データ取得仕様

種類	形式	製品名	製造	主な仕様
		Enviro Vibe	IVI	実用周波数範囲:8~200Hz
				最大ストローク: 6.99cm
				ホールドダウン重量:約7.5トン
震源	中型バイブレー ター			リアクションマス重量:約0.8トン
				ベースプレート設置面積:約 1.1m ²
				総重量:8.4 トン
				寸法:(L)6.1×(H)2.4×(W)1.9m
震源	油圧インパクタ ー	JMI-200 II	地球科学 総合研究所	ロッド重量:200kg
				圧縮空気(窒素)最大圧力:10 気圧
				総重量:6.5トン
受振器	ジオフォン	OMNI- 2400	GEOSPACE	速度型地震計(1成分)
				固有周波数:15Hz
				グルーピング:3個
	独立型レコーダ ー	GSR/GSX	GEOSPACE	A/D 分解能:24 ビット
				サンプリング間隔:
探鉱機				0.25, 0.5, 1.0, 2.0, 4.0msec
				保存データ形式:SEG-D または
				SEG-2
				周波数特性:3Hz-0.8 of Nyquist
				プリアンプゲイン: 0,12,24,36dB
探鉱機	発震時刻・ パイロット信号 データレコーダ ー	SDR	GEOSPACE	A/D 分解能:24 ビット
				サンプリング間隔:
				0.25, 0.5, 1.0, 2.0, 4.0msec
				保存データ形式:SEG-D または
				SEG-2
				周波数特性:3Hz-0.8 of Nyquist
				プリアンプゲイン:
				0, 6, 12, 18, 24, 30, 36dB

表 12 測定機器 仕様一覧

c)探査データの処理

取得した探査データに対して、一般的な共通中間点重合法(例えば、物理探査学会,20 16)による各種のデータ編集・フィルタ処理を施した。データ処理にあたっては、田沢測 線では図129によって、岡田測線では図130によって示される解析測線(重合測線)を設定 した。これらの解析測線において、SN比(シグナルとノイズの比)を高めた時間断面を作成 した。それぞれの測線の時間断面に対して次に、速度解析結果等に基づいてマイグレーシ ョン処理を施し、時間断面中の反射面を正しい位置に戻した。さらに、深度変換により、 時間断面を深度断面に変換した。これらの探査データ処理作業のフロー図を図131に示す。 また、各処理の際に適用した主なパラメータを表13に示す。

図 129 田沢測線の重合測線図。基図は都市圏活断層図「松本」(松多・他, 1999)を使用。

図 130 岡田測線の重合測線図。基図は都市圏活断層図「松本」(松多・他, 1999)を使用。

図 131 反射法地震探査のデータ処理フローチャート

		田沢測線	岡田測線		
処理名	パラメータ等	設定値		備考	
フ゜レフィルタ	バンドパス フィルタ帯域	20~100Hz	20~110Hz		
位相補正	-	インパルスに変換するオ ペレータを設計し適用	インパルスに変換するオ ペレータを設計し適用		
振幅調整	AGC ウィント [*] ウ幅	200msec	180msec		
テ゛コン ホ゛リューション	タイプ	ホワイトニンク゛	ホワイトニンク゛		
	自己相関演算用 ゲート長	1200msec	800msec	タイムハ゛リアント スへ゜クトラル ホワイトニンク゛	
	フィルタ長	120msec	80msec		
	ホワイトノイス゛	1%	1%	等	
	メッシュサイス゛	1m2			
静補正	初期速度モデル	深度と共に (100~1			
	最大オフセット距離	300m	300m 500m		
	再構成速度範囲	100~65			
	トモグラフィ 付加条件	速度逆転			
	トモグラフィ 繰返回数	60 回 80 回			
	置換速度	1500			
	標高補正用速度	1500			
速度フィルタ	種類	<tau-p ご<br="">1250m/sec 除去する。</tau-p>			
残差静補 正	最大許容時間 シフト量(1回 当)	5msec	適用せず	補 正 量 自 動算出	
	繰り返し 算出回数	4回 —			
NMO 補正	ストレッチミュート 適用比率	1.			
帯域通過 フィルタ	タイムハ゛リアントファイルタ	$0 \sim 50 \text{msec}$; $2 \sim 150 \text{Hz}$ $50 \sim 250 \text{msec}$; $2 \sim 120 \text{Hz}$ $250 \sim 1000 \text{msec}$; $8 \sim 80 \text{Hz}$ $1000 \text{msec} \sim$; $8 \sim 60 \text{Hz}$	$0 \sim 150 \text{msec}$; $15 \sim 150 \text{Hz}$ $150 \text{msec} \sim$; $10 \sim 80 \text{Hz}$	マイク ^{・レーション} 処理後の 時間断面 に適用	

表 13 データ処理に適用した主なパラメータ

d)探查結果

一般的な共通反射点重合法によるデータ処理の結果、マイグレーション深度変換断面を 得て、田沢測線では深度2km程度まで、岡田測線では深度300m程度までの地下構造をイ メージングすることができた。田沢測線の重合時間断面図を図132に、マイグレーション 時間断面図を図133に、深度変換断面図を図134に示す。また、岡田測線の重合時間断面 図を図135に、マイグレーション時間断面図を図136に、深度変換断面図を図137に示す。

田沢測線の断面の特徴を概説すると、都市圏活断層図松本図幅で示された松本盆地東縁 断層の地表推定位置(松多・他,1999)の付近よりも西側の領域では、連続性が非常に良 く浅部ではほぼ水平で深部では緩やかに東傾斜する反射面群が見られた。それに対して、 松本盆地東縁断層の東側かつ山地盆地境界の西側では水平あるいはやや西傾斜であるが連 続性の悪い短い反射面群が見られた。さらに山地盆地境界の東側山地内では断面内での半 波長が1km以下の規模の褶曲列が見られた。

次に、岡田測線の断面の特徴を概説すると、断面の東部(段丘および沖積低地が分布) ではほぼ水平な連続性の良い反射面群で特徴付けられる。また、断面の中部(段丘が分布) でも反射面の連続性は良いが、緩やかに東傾斜しており一部は上に凸の形状を示している。 対して、断面の西部(山地)では反射面の連続性が悪くなっている。

図 132 田沢測線の重合時間断面図

図 133 田沢測線のマイグレーション時間断面図

図134 田沢測線の深度変換断面図。深度方向の強調は無し。

図 135 岡田測線の重合時間断面図

図 136 岡田測線のマイグレーション時間断面図

図 137 岡田測線の深度変換断面図。深度方向の強調は無し。

田沢測線の深度変換断面図に対して、地下の断層の形状についての解釈を付したものを 図 138 に示す。また、岡田測線の深度変換断面図に対して、同様に断層地下形状の解釈を 付したものを図 139 に示す。

田沢測線の結果断面における水平および緩やかな東傾斜の反射面群の東端に注目する と、表層では松本盆地東縁断層の推定地表位置(松多・他,1999)にほぼ相当する。した がって、この反射面群の途切れは松本盆地東縁断層を示すものと考えられる。表層から深 度 500m程度まではこの断層を挟んで西側には上述した水平な反射面群が、東側には連続 性は悪いものの水平あるいは西傾斜する特徴を持つ反射面群が見られる。さらにより深部 を見ると反射面群の途切れの位置は深くなるほどやや東側によっている。このような地下 の反射面の特徴および反射面の途切れ位置から、松本盆地東縁断層の地下形状は 75°前後 の東傾斜を示していると判断できる。

次に、岡田測線では、水平な連続性の良い反射面分布域(東部)、東傾斜した連続性の良い反射面分布域(中部)、反射面の連続性が悪い領域(西部)のそれぞれ表層付近での境界 位置は都市圏活断層図松本図幅(松多・他,1999)に示された断層の地表位置に相当する。 また、上述した東部領域-中部領域の地下での境界部では反射面の途切れ・食い違いが見 られることと、東傾斜する中部領域の反射面群は上に凸の形状を呈しており、これらは西 傾斜する逆断層の運動に伴う変形構造であると判断した。こうした変形構造にもとづいて、 地表位置 CMP200 の地点から地下では西方へ傾斜する活断層を解釈した。さらに、上述した 中部領域-西部領域の地下での境界部では、やや不明瞭ながらも一部の反射面群では西側 が上昇する食い違いが見られる。したがって、位置精度はやや低いものの、CMP400 の地点 から西方へ傾斜する活断層を解釈した。なお、岡田測線の断面で解釈した2条の断層の傾 斜角度は共に40°~45°程度である。よって、地下浅部で西側の松本盆地東縁断層に収斂 すると推定され、西傾斜の逆断層は大地震を生じる独立した震源断層としては挙動しない 可能性が高いと判断される。

図 138 田沢測線の深度変換断面図における断層地下形状の解釈 深度方向の強調は無し。

図 139 岡田測線の深度変換断面図における断層地下形状の解釈 深度方向の強調は無し。

- 11) 諏訪湖南岸断層群・岡谷市湊地点におけるトレンチ・ボーリング調査
- a)調査地点の概要

湊地点は、諏訪湖に流入する支流性小河川の扇状地面上に位置する(図 140, 141)。 トレンチ掘削位置の数m南東側まで比高1m程度で諏訪湖側(北東側)が低い小崖地形 が北西-南東方向に連続しているが、トレンチ掘削位置より北西側には崖地形は認めら れない。この小崖地形を境に扇状地の傾斜が不連続となっており、断層崖の可能性があ る。都市圏活断層図においては、湊地点付近には断層は図示されておらず、100m ほど南 西側の山裾に活断層(位置やや不明確)及び活断層(伏在部)が図示されている。トレ ンチとボーリングの掘削位置を図 142、ボーリングによる地質断面図を図 143 に示す。

b) ボーリングの層序

湊地点のボーリングコアの地質は、上位から1層:人為的影響が見られる表土・盛土、 2層:腐植混じり砂礫層、3層:砂礫層(酸化色、大礫)、4層:砂礫層(還元色)、5 層:砂礫とシルトの互層、6層:砂礫層(巨礫、木片を含む)、7層:砂礫層(大礫)及 び基盤岩(凝灰角礫岩及び凝灰岩)に区分される(図58,59)。このうち、6層は5層中 に挟在するため、以下では6層を挟んで上位を5-1層、下位を5-2層とする。なお、6 層はMNT-3孔には分布しない。

1層は、すべてのボーリング孔で1~1.5m程度の層厚で確認された。一部にコンクリート片やビニール片が混入することから、人為的影響を受けた表土・盛土であると判断した。なお、本層下限付近で採取した試料(MNT-2-C1.03)からは、1666~1890 cal ADの年代が得られている。

2層は MNT-5 孔以外の4 孔において、15~60cm 程度の層厚で確認された。扇状地堆積 物であると考えられるが、後述するようにトレンチ壁面での観察結果から人工層の可能 性もある。

3層は、すべてのボーリング孔で 60cm~1m 程度の層厚で確認された。酸化色を呈す ることを特徴とし、淘汰が不良であり、大礫を多く含む。扇状地堆積物と考えられる。 4層は、すべてのボーリング孔で 25~80cm 程度の層厚で確認された。細礫~中礫が多 く、不明瞭な堆積構造が見られる。扇状地堆積物と考えられる。

5 層は、前述の通り、MNT-3 孔を除いて6 層を挟んで 5-1 層と 5-2 層に細分される。 5-1 層は 1.8~2.7m 程度、5-2 層は 1.3~1.8m 程度の層厚で、合計で 3.2~4.3m 程度で ある。MNT-3 孔では 3.6m 程度である。細礫を主体としたシルト混じりの砂礫層と腐植質 な砂質シルトの互層であり、構成粒子に不明瞭ながら水平な堆積構造が確認される。氾 濫原堆積物もしくは湖成堆積物と考えられる。5-1 層上部で採取した試料(MNT-2-C3.04) からは、27711~27345 cal BP の年代が得られている。

6 層は MNT-3 孔以外の4 孔において、70cm~1.2m 程度の層厚で確認された。径 20cm を超える巨礫や径 10cm を超える木片を含む。土石流などの突発的なイベントなどに伴 う河川堆積物と考えられる。本層上部で採取した試料(MNT-2-C5.30)からは、29342~ 28720 cal BPの年代が得られている。

7層は MNT-3 孔以外の4 孔において、60cm~1.2m 程度の層厚で確認された。径 10cm を超える大礫を含み、淘汰も悪い。河川堆積物と考えられる。本層上部で採取した試料 (MNT-2-C7.36)からは、30900~30345 cal BPの年代が得られている。

基盤岩は、MNT-1、MNT-4、MNT-5 孔では、30cm~1m 程度の凝灰角礫岩とその下位の凝 灰岩が確認されたのに対し、MNT-2、MNT-3 孔では凝灰角礫岩のみが確認された。これら の基盤岩類は山崎・他(1991)で示されている前期更新世の塩嶺累層と考えられる。

小崖地形の延長である MNT-4 孔と MNT-5 孔の間には顕著な地層のずれは確認されない。 しかし、MNT-2 孔において地層境界が約 30 度に傾斜し、腐植質シルトが約 45 度傾斜し ている構造などが見られた。6層及び7層が MNT-3 孔に分布しない理由として、MNT-3 孔が河道から外れていた可能性もあるが、断層変位による可能性も考えられる。基盤岩 の岩種も MNT-2 孔と MNT-5 孔の間で差異が見られる。以上のことから、MNT-2 孔と MNT-3 孔の間、もしくは、MNT-2 孔と MNT-5 孔の間に断層が存在する可能性が示唆される。

c) トレンチの層序

トレンチ壁面には腐植質砂混じりシルト/シルト混じり砂礫の互層状の堆積物のほか、 それを覆う砂礫を主体とした堆積物が露出した(図 144~147)。堆積物は連続性や削剥 の有無、層相の相違により1層から5層に区分し、いくつかの地層についてはさらに細 分した。以下に湊トレンチにおける各地層区分について述べる。

1層:砂・礫混じりシルト(7.5YR4/6:褐色)

トレンチの全体にわたって、地表から1~1.5m 程度の層厚で分布する。細礫~20cm を超 える巨礫まで広く混在し、淘汰は不良である。礫種は安山岩及び凝灰岩を主体とし、一 部に砂岩などの堆積岩を含む。多量の木片や植物片を混入するほか、縦に植物根が伸び ている。NW3~NW9では、H3付近に径 10cm 程度の丸太が水平に並ぶ。コンクリート片や プラスチック片が混入する。人工層である。

2a 層:腐植質砂礫(7.5YR3/3:暗褐色)

SE1~SE7、SW、NW1~NW3 で、H3 付近に 10~20cm 程度の層厚で分布する。礫は亜角~亜 円礫を主体とする。平均礫径は 3.5cm、最大礫径は 8 cm、礫率は 10~30%程度であり、平 均的には 2b 層より低い。礫種は安山岩及び凝灰岩を主体とする。細礫を多く含み、一部 に中礫を伴い、淘汰は良い。基質は中~細粒砂を主体とし、シルトを含む。SW 面では、 中~細礫主体部と粗粒砂主体部が水平に複数層分布するようにみえる。一部に 3a 層由 来の偽礫を含む。木片や植物片を多く含むほか、植物根が縦に伸びる。

2b 層:シルト混じり砂礫(10YR3/4:暗褐色)

SE9~SE11 に、深度 1.4m 付近から 30cm 程度の層厚で分布する。2a 層ほどではないが、 やや腐植質である。礫は亜角~亜円礫を主体とする。2a 層よりは、亜角礫程度の角ばっ た礫を含み、円磨度は低い。平均礫径は 11cm、最大礫径は 19cm である。礫率は 30%程度 で 2a 層より高い。礫種は安山岩及び凝灰岩を主体とする。基質は中~細粒砂を主体と し、シルトが混じる。不明瞭だが、水平なラミナが見られる。一部に植物根が縦に伸び る。

3a 層:砂混じりシルト質礫(2.5Y5/3:黄褐色)

トレンチの全体にわたって、深度1.4m付近から1m程度の層厚で分布する。礫は角~亜 角礫を主体とし、2b層よりも円磨度は低い。巨~大礫を主体とし、淘汰は不良である。 礫率は10~30%程度と4a層より低い。径が20cmを超える礫も多く混在し、50cmを超え る礫も含まれる。礫種は安山岩を主体とし、凝灰岩を含む。基質はシルトを主体とし、 細粒砂が混じる。基質中には明瞭な堆積構造は見られない。多量の植物根が縦に伸び、 太いものでは径が5cmにも及ぶ。

3b 層: 腐植・砂混じりシルト質礫(2.5Y3/2:黒褐色)

NW5~NW7 及び SE7~SE9 に、深度 2.2m 付近から 10cm 程度の層厚で分布する。礫種は 3a 層と同様だが、礫径は最大で 10cm 程度と小さい。また、3a 層より基質にシルトを多く 含み、腐植質に富む。

4a 層:シルト混じり砂礫(2.5Y5/4:黄褐色)

トレンチの全体にわたって、H2 付近から 50cm 程度の層厚で分布する。礫は一部に角礫 を含むが、全体的には 3a 層より円磨度は高い。礫種は安山岩及び凝灰岩を主体とする。 礫率は 40%程度で、3a 層より高い。細礫~10cm 程度の大礫を含み、淘汰はやや不良。基 質は粗~中粒砂を主体とし、細粒砂やシルトが混じる。不明瞭な水平に近いラミナが見 られる。一部に、木片や植物片を含むが、2a 層以浅及び 5 層よりは少ない。同様に植物 根も混在するが、浅い部分よりは少なく、径が太いものも見られない。

4b 層:腐植・シルト混じり砂礫(2.5Y3/1:黒褐色)

SE3~SE5 に、H2 付近から 10cm 程度の層厚で分布する。礫種は 4a 層と同様だが、礫径が 小さく、礫率も低い。また、基質も 4a 層よりシルトを多く含み、腐植質に富む。

5層:腐植質砂混じりシルト/シルト混じり砂礫 互層

(シルト層:2.5Y5/4:黄褐色、砂礫層:2.5Y4/3:オリーブ褐色)

トレンチの全体にわたって、壁面最下部に分布する。南西側では底盤から1m 程度分布 するが、上位層との境界が北東に向かってなだらかに下がるため、NW6 及び SE6 より北 東側では 50cm ほどしか露出しない。腐植質砂混じりシルト層は、多量の木片や植物片を 含み、大きいものでは径が 10cm を超える。シルト混じり砂礫層は、中粒砂〜細礫からな る。各単層は側方への連続性は悪く、それぞれが漸移的であったり、レンズ状に分布が 途切れたりする。全体に緩やかな傾斜のラミナが発達しているが、NW3〜NW6 及び SE3〜 SE6 では急傾斜した褶曲や不明瞭な断層構造が顕著である。ラミナの傾斜は全体に 30 度 程度以下であるが、急傾斜部では 30 度を超え、最大で 60 度程度の傾斜を示す。

断層は複数条認められ、いずれも急傾斜したラミナを切り、南西側が北東側にのし上 げる逆断層的な変形を示す(図 146, 147)。変位量は断層に沿った方向で 10 数 cm 程度 である。断層面はいずれも非常に不明瞭かつ不連続である。これらの断層は 4a 層には変 形を及ぼしていない。

d) 湊地点および周辺の堆積構造と上下変位速度

湊地点ではボーリング調査により1層~7層、トレンチ調査により1層~5層が観察 された。このうち、5層はトレンチ壁面において、急傾斜した褶曲や不明瞭な断層構造 が観察された(図 146, 147)。この構造は北東-南西方向の圧縮による水平短縮により 生じたと考えられる。圧縮の原因については、地すべりの末端における圧縮や、地震動 による流動変形などが考えられるが、いずれも根拠に乏しい。なお、この構造は上位の 4層に続かないことから、5層堆積期間中にイベント的に変形が生じたと考えられる。

5層は、MNT-2 孔の7層上部から得られている年代値から、およそ3万年前に堆積を 始めたと考えられる。山崎・他(1991)は、諏訪湖南岸で行ったボーリング結果から、 AT テフラ降灰以降2万年間は基本的に堆積環境が河川氾濫原もしくは湖水域であった ことを示しており、5層も同様の環境で形成されたと考えられる(図 148)。先に述べた ように6層は、5層堆積期間内に生じた土石流などのイベントに伴う堆積物と考えられ ることから、6層上部で得られた年代試料は5-1層最下部の年代とおおよそ同じ値を示 していると考えられる。このことから、MNT-2 孔において、5-1 層上部の深度 3.04m から 得られた年代値(MNT-2-C3.04:27711~27345 cal BP)及び6層上部の深度5.30mから 得られた年代値 (MNT-2-C5.30:29342~28720 cal BP) の中央値を用いると、5-1層の 堆積速度は 1.5mm/年と求められる。山崎・他(1991) では、諏訪湖南岸で掘削された 63B 孔(位置は図148を参照)から検出された AT、Aso-4、0n-Pm1の各テフラの年代と出現 深度から、63B 孔における堆積速度を 1.5mm/年と算出しているが、Maruyama et al. (2019) で示されている AT と Aso-4の最新の年代(それぞれ 30078±96 cal BP、87.3~86.8ka) を用いて計算し直すと、63B 孔における堆積速度は 1.3mm/年となる。この値と比べると MNT-2 孔で算出された堆積速度はやや大きな値となるが、これは湊地点は盆地の縁辺に 位置するのに対し、63B 孔は盆地の中心部に近いといった堆積場所の差によるものと考 えられる。

湊地点の調査の結果、ボーリングでは活断層が存在する可能性が示唆されたが、トレンチ壁面には明瞭な断層は露出しなかった。ただし、MNT-2 孔と MNT-3 孔の間はトレンチを掘削していないため、この間に活断層が存在する可能性は否定できない。

湊地点の約1km南東の諏訪湖南西端で掘削された山崎・他(1991)の63A 孔では、河 成氾濫原堆積物中の深度33.4m(標高728.2m)からATテフラが検出されている。一方、 MNT-2 孔の深度7.36m(標高755.0m)からは、ATテフラとほぼ同じ30900-30345 cal BP の年代が得られている。また、この直上から湖成堆積物または河成氾濫原堆積物が分布 する。ATテフラ降灰直後の両地点間に標高差が無かったと仮定すると、ATテフラ降灰以 降の約3万年間に26.8mの標高差が生じたことになり、両地点の間のほぼ湖岸に沿う位 置に平均変位速度0.89m/1000年(活動度B級)の活断層の存在が示唆される(図148)。

163

断層の位置は文献1、2、3、4に基づく

基図は国土地理院発行数値地図 200000「高山」、「長野」、「飯田」、「甲府」を 使用.

図 140 糸魚川-静岡構造線断層帯・中北部区間の位置 地震調査研究推進本部地震調査委員会(2015)による。黄色枠は図 141 の範囲。

図 141 諏訪湖南岸断層群・湊地点の位置 基図は今泉・他(1999)を使用。

図 142 諏訪湖南岸断層群・湊地点のトレンチ・ボーリング位置

図 143 湊地点におけるボーリング地質断面図

図 144 湊地点におけるトレンチ壁面の写真

図 145 湊地点におけるトレンチ壁面のスケッチ

図 146 湊地点におけるトレンチ北西壁面の拡大スケッチ

図 147 湊地点におけるトレンチ南東壁面の拡大スケッチ

木片・植物片・植物根

×1 走向·傾斜測定位置

図 148 諏訪湖南岸断層群・湊地点周辺の累積上下変位量 上段の基図は都市圏活断層図を使用。右下の層序は山崎・他(1991)による。 12) 下蔦木断層・下蔦木地点の3Dトレンチ・ボーリング調査

a) 調査地点の概要

下蔦木地点は南東に流下する釜無川に沿った段丘面上に位置し、都市圏活断層図に おいて下蔦木断層が活断層として示されている地点である(図 149)。北東から南西 に向かって流下する支流性の小河川が形成した扇状地上に、比高2~3m で北東側 低下の逆向き低断層崖が分布しており、複数の文献で断層崖と認められているほか、 小河川の屈曲から左横ずれが指摘されている。

ドローン測量はこれらの断層地形が認められる範囲において、国道を避ける形の測 量範囲とした。また、ボーリング調査は扇状地上に低崖が認められる地点において、 断層の両側で掘削した。

トレンチ調査地点は低崖が発達しておらず断層位置が不明確であるが、既往のトレ ンチで断層が確認されているバルジ地形と扇状地上の逆向き低崖を直線的に結んだ 延長上で3Dトレンチを掘削した。

b) ドローン LiDAR による精密地形計測

ドローン測量は図 150 に示す範囲とフライトプランにしたがって、複数回のフライト で計測を行った。また、樹木が多い部分はフライトを多くし、データの精度向上を図っ た。ドローン測量で得られた 0.1mDEM から作成した等高線図を図 151 に、陰影図を図 152 に示す。これらの図において、扇状地上の逆向き低崖やバルジ地形が明瞭に表現されて いることが見て取れる。バルジ地形は周囲に樹木が多いため、空中写真では詳細な位置 や形状が把握できなかったが、ドローン測量では明瞭に表現されており、この手法が有 効であることが明らかになった。

c)下蔦木地点の3Dトレンチ調査

i)トレンチ掘削の概要

下蔦木地点においては、トレンチを2孔(Aトレンチ、Bトレンチ)、ピットを2孔(C1 ピット、C2ピット)掘削した。Aトレンチは推定される断層に直交する方向に、断層推 定位置をまたいで掘削し、トレンチ SE 面の一部は深掘りを行ったほか、断層平行方向に も掘削した(図153)。Bトレンチ SE 面の一部は深掘りを行ったほか、断層平行方向に レンチと平行方向に用地内で最大限南西方向に寄せた位置で掘削した。C1ピットはAト レンチ及びBトレンチが位置する水田から、農道を隔てて南東側の水田において掘削し た。C2ピットはAトレンチ及びBトレンチと同じ水田の南東側において掘削した。Aト レンチ壁面と拡張部分、断層平行部分のそれぞれについて写真の展開図を図154~156、 スケッチを図157~159に示す。また、Bトレンチ壁面写真の展開図を図160に、Bトレ ンチ壁面スケッチの展開図を図161にそれぞれ示す。

ii)トレンチの層序

トレンチ及びピット壁面には砂礫を主体とした堆積物とそれに挟在する腐植質シルト・ 砂主体の堆積物が露出した。堆積物は連続性や削剥の有無、層相の相違などにより区分 し、さらにそれぞれの層をいくつかに細分した。 (1) A トレンチ

Aトレンチでは、上位から0層:掘削残土、1層:盛土、2層:腐植質シルト、3層: 扇状地性礫層(上位:断層を覆う)、4層:扇状地性礫層(上位)、5層:腐植質シルト と砂礫の互層、6層:扇状地性礫層(下位)、7層:砂混じりシルト(フラッドローム)、 8層:シルト混じり砂礫(釜無川系)の9層に区分し、いくつかの地層については細分 した。

0層:掘削残土。トレンチ掘削時の残土である。NW2 面、SE2 面、NE2 面の上端部に分 布する。

1層:盛土(10YR5/8:黄褐色)。シルト混じり砂礫からなる。最大礫径は30cm、平均礫 径は13cmで、亜円~亜角礫からなる。礫種は安山岩・凝灰岩が主体。淘汰はやや不良。 礫率は30%程度。基質は中~細粒砂主体である。ところどころに腐植質シルト主体の部 分も見られる。トレンチの南東側及び南西側ほど層厚を増す。

2層:腐植質シルト(10YR2/3:黒褐色)。植物片・木片や植物根を多量に混入する。ま れに最大径15cmまでの亜角~亜円礫を混入する。SE1面のSE1付近には加工された木杭 らしき木片が露出した。トレンチの南東側及び南西側ほど層厚を増す。

3a 層:シルト混じり砂礫(10YR3/4:暗褐色)。最大礫径は 18cm、平均礫径は 7 cm で、 亜角~亜円礫からなる。礫率は 30%である。礫種は安山岩・凝灰岩が主体で、ごくまれ に砂岩・泥岩を混入する。淘汰は不良である。基質はシルト混じり砂である。径 40 cm の 巨礫を1つ混入する。

3b 層: 礫混じりシルト質砂(7.5YR3/3:暗褐色)。やや腐植質なシルト混じり砂からなり、全体に亜角~亜円礫を混入する。礫は 3a 層や 4a 層に似る。

4a 層:シルト混じり砂礫(7.5YR3/3:暗褐色)。最大礫径は25cm、平均礫径は6 cm で、 亜角~亜円礫からなる。礫率は20%程度である。礫種は安山岩・凝灰岩が主体で、ごく まれに砂岩・泥岩を混入する。淘汰は不良である。基質はやや腐植質なシルト混じり砂 である。ところどころに巨礫が集中する。

4b 層:砂礫(7.5YR4/3:褐色)。最大礫径は25cm、平均礫径は8cmで、亜角~亜円礫 からなる。礫率は40%程度である。淘汰は不良である。礫種は安山岩・凝灰岩が主体で、 ごくまれに砂岩・泥岩を混入する。基質は中粒砂主体である。

4c層:シルト混じり砂礫(7.5YR3/2:黒褐色)

最大礫径は 20cm、平均礫径は 6 cm で、亜角~亜円礫からなる。礫率は 20~30%である。 淘汰はやや不良である。礫種は安山岩・凝灰岩が主体で、ごくまれに砂岩・泥岩を混入 する。基質はシルト混じり砂であり。NW1~5 付近では下位の 5a 層との境界は不明瞭で 漸移的である。

4d 層: 礫混じり砂(7.5YR3/2: 黒褐色)。礫混じりの中粒砂~粗粒砂を主体とするほか、 一部は細礫主体である。全体にやや腐植質であるが、NW1 面の NW6~7 付近は特に腐植分 が多い。礫は 4a 層や 4e 層に似るが、礫径が平均 2 cm 程度と小さい。

4e 層:砂礫(7.5YR3/3:暗褐色)。最大礫径は40cm、平均礫径は5cmで、亜角~亜円 礫からなる。礫率は20~40%である。礫種は安山岩・凝灰岩が主体で、ごくまれに砂岩・ 泥岩を混入する。淘汰は不良である。基質は粗粒~中粒砂である。場所による礫率の変 化が大きい。5c 層との境界は明瞭で、NW13 付近では軽微に削り込んでいる。5c 層が分 布しない NW16 付近より北東側では6層と直に接するが、その境界は非常に不明瞭である。

5a層:礫混じり砂(10YR4/4:褐色)。粗粒砂を主体とし、径3cm程度以下の亜円~円 礫を含む。不明瞭なラミナが見られる。

5b 層:砂礫(10YR3/4:暗褐色)。最大礫径は30cm、平均礫径は3cmで、亜角~亜円礫 からなる。礫率は30~40%である。礫種は安山岩・凝灰岩が主体で、ごくまれに砂岩・泥 岩を混入する。淘汰はやや不良である。基質はやや腐植質な粗~中粒砂からなる。NW8~ 10 付近では下部が砂主体となる。

5c 層:腐植質シルト(2.5Y2/1:黒色)。腐植質シルトを主体とし、砂を多量に混入する。ところどころに最大径 30cmの亜角礫が点在する。木片・植物片及び植物根を多量に 混入する。

6層:砂礫(2.5Y3/2:黒褐色)。最大礫径は40cm、平均礫径は4cmで、亜角~亜円礫 からなる。礫率は20~40%である。礫種は安山岩・凝灰岩が主体で、ごくまれに砂岩・泥 岩を混入する。淘汰はやや不良である。基質は粗~中粒砂、一部では腐植質となる。と ころどころに木片・植物片が点在する。

7a 層: 礫・砂混じりシルト(10YR5/4:にぶい黄褐色)。礫・砂混じりシルトからなる。 上端部は腐植質である。7b 層に似るが、亜円~亜角礫を多量に混入する。礫種は安山岩・ 凝灰岩からなる。

7b層:砂混じりシルト(10YR5/4:にぶい黄褐色)。均質な砂混じりシルトからなり、塊状である。鉛直方向に伸びる植物根が全体に発達する。NW1 面の北東端では腐植質シルト主体部も見られる。ごくまれに礫を混入する。釜無川本流の影響がなくなった後のフラッドロームと考えられる。

7c層:礫・砂混じりシルト(10YR5/4:にぶい黄褐色)。礫・砂混じりシルトからなる。 7b層に似るが、亜円~亜角礫を多量に混入する。礫種は釜無川系の砂岩、泥岩、安山岩 からなる。

8層:シルト混じり砂礫(2.5Y5/3:黄褐色)。最大礫径は70cm、平均礫径は10cmで、 亜円~円礫からなる。礫率は40~50%である。釜無川系の砂岩、泥岩、安山岩、斑レイ 岩、花崗岩などの礫を含むことを特徴とする。淘汰は不良である。基質はシルト混じり 砂である。

(2) B トレンチ

Bトレンチでは B1 層~B13 層に区分した。B1 層が A トレンチの 1 層に、B2 層が A トレ ンチの 2 層に、B4~B7 層が A トレンチの 3 層及び 4 層に、B8 層が A トレンチの 5 層に、 B9~B12 層が A トレンチの 6 層に、B13 層が A トレンチの 8 層にそれぞれ概ね相当する。 なお、B3 層に相当する地層は、A トレンチには分布しない。また、A トレンチの 0 層及 び 7 層に相当する地層は、B トレンチには分布しない。

B1 層:盛土(10YR5/8:黄褐色)。シルト混じり砂礫層。平均礫径は13cm、最大礫径は 30cm。亜円礫、一部亜角礫からなる。礫種は安山岩が主体。淘汰はやや不良。礫率は30% 程度。基質は中~細粒砂主体で、極細粒砂~シルトが混じる。植物根、植物片を含む。 トレンチの全体にわたって、地表から層厚1m程度で分布する。 B2 層:腐植質シルト(7.5YR3/2:黒褐色)。礫・砂混じりの腐植質シルトからなり、植物根、植物片、木片を多量に含む。B1 層との境界付近に全体的に B1 層由来と考えられる大~中礫が混入する。下限付近にも、一部に B4 層由来と考えられる中~細礫が混入する。トレンチの全体にわたって、B1 層の下限から層厚 1 ~1.4m 程度で分布する。下位層との境界が北東から南西にむかってなだらかに下がり、南西側ほど層厚を増す。

B3 層:シルト質砂礫(7.5YR2/2:黒褐色)。シルト質砂礫からなり、平均礫径は15cm、 最大礫径は27cm。礫径は40%程度。基質は粗~中粒砂が主体だが、B2 層との境界付近で は腐植質シルトが主体となる。亜円礫、一部亜角礫からなる。礫種は安山岩が主体であ る。巨~細礫まで混在し、淘汰は不良である。上限及び下限付近に巨礫が分布する。NW2、 SE2 より南西側及び SW 面に、H1 を挟んで層厚 0.5~1m 程度で分布する。NW 面よりも SE 面の方が、層厚が大きい。下位層を明瞭に削り込んでおり、SE 面と SW 面の境界付近で 最も下限が低くなる。

B4 層:シルト混じり砂礫(10YR3/3:暗褐色)。シルト混じり砂礫からなり、平均礫径は 10cm、最大礫径は27cm。亜円礫を主体とし、一部亜角礫を伴う。礫種は安山岩を主体と し、淘汰はやや不良で、礫率は20%程度である。基質は腐植質シルト主体で、細~極細 粒砂が混じる。B2 層との境界に1~5 cm 程度の礫が水平に並ぶ。植物根を多く含み、植 物片を伴う。B12 層とは、礫率が低いことから区分される。NW5 及び SE5 より北東側に、 B2 層の下位に最大層厚 80cm 程度で分布する。

B5 層:砂・礫混じり腐植質シルト層(7.5YR2/1:黒褐色)。腐植質シルトを主体とし、 細~極細粒砂が混じる。中~細礫が全体的に混入し、一部に大礫を含む。礫は亜円礫か らなり、礫種は安山岩主体である。植物根や植物片を含む。NW1~14、SE2~12、SW+1~ +2に、最大層厚70cm程度で分布する。NW面ではNW14付近で、SE面ではSE12付近で、 B4層内でレンズ状に収束する。

B6 層:シルト混じり砂礫(10YR3/2:黒褐色)。シルト混じり砂礫からなり、平均礫径は 3 cm、最大礫径は9 cm、亜円礫を主体とする。礫種は安山岩を主体とし、淘汰は普通、 礫率は 40%程度である。礫は概ね水平にならぶ。基質は粗~細粒砂主体で、極細粒砂~ シルトが混じる。やや腐植質で、植物根や植物片を含む。B7 層とは礫率が高く、礫径が 小さいことで区分される。NW1~4 及び SW-1~+2 に、B5 層の下位に層厚 30 cm 程度で分 布する。NW 面では、NW4 付近で B5 層内にレンズ状に収束する。SW 面では、SW-1 付近で B3 層に削り込まれる。

B7 層:シルト混じり砂質礫(7.5YR3/2:黒褐色)。シルト混じりの砂質な礫からなり、 平均礫径は4.5cm、最大礫径は11cm、亜円礫を主体とし、亜角礫を伴う。礫種は安山岩 を主体とし、淘汰は普通で、礫率は30%程度である。礫は概ね水平に並ぶ。基質は粗~ 中粒砂が主体で、細粒砂~シルトが混じる。NW4 及び SE4 より南西側では、下限付近に 大礫が分布する。NW9、SE9 より南西側及び SW 面に、B5 層及び B6 層の下位に最大層厚 80cm 程度で分布する。

B8 層: 礫混じり腐植質シルト(7.5YR2/1: 黒色)。腐植質シルトを主体とし、中~極細 粒砂混じる。礫は亜円礫からなり、礫種は安山岩を主体とする。NW7~9 及び SE6~8 で は礫率が低いのに対し、それより南西側では礫率が高くなり、15cm を超える礫も混入す る。植物根や植物片を含む。NW5~8 及び SE4~9 に、B7 層の下位に層厚 20~40cm 程度で 分布するが NW8 付近では B7 層と指交関係にある。NW 面では、概ね層厚 20cm 程度で分布 する。SE 面では、層厚 20~40cm 程度で NW 面に比べて変化が大きい。

B9 層:シルト混じり砂礫(10YR3/4:暗褐色)。シルト混じり砂礫からなり、平均礫径は 3 cm、最大礫径は 4.5 cm、亜円礫を主体とする。礫種は安山岩が主体で、淘汰は良く、礫 率は 40%程度である。礫は概ね水平に並ぶ。基質は細粒砂が主体で、シルトが混じる。 やや腐植質で植物片を含む。B10 層とは礫径が小さく、礫率が高いことで区分される。 NW6~10 に、B4 層及び B8 層の下位に分布する。下限は不明であり、トレンチ内では最大 15 cm 程度が露出する。

B10 層:シルト混じり砂礫(10YR2/3:黒褐色)。シルト混じり砂礫からなり、平均礫径 は 6.5 cm、最大礫径は 12 cm、亜円礫を主体とし、亜角礫を伴う。礫種は安山岩が主体で、 淘汰は普通、礫率は 30%程度である。基質は中~細粒砂主体で、シルトが混じる。やや 腐植質。植物根を含む。NW2~7、SE3~4 及び SE5~7 に、B7 層及び B8 層の下位に分布す る。下限は不明であり、トレンチ内では最大 25 cm 程度が露出する。

B11 層:砂混じり腐植質シルト(10YR3/3:暗褐色)。腐植質シルトを主体とし、細~極細粒砂が混じる。植物根や植物片を含む。NW9~10 に、B9 層の下位に分布する。下限は不明であり、トレンチ内では最大 15cm 程度が露出する。

B12 層:シルト混じり砂礫(10YR2/2:黒褐色)。シルト混じり砂礫からなり、平均礫径 は8 cm、最大礫径は 30 cm、亜円礫を主体とし、亜角礫を伴う。礫種は安山岩が主体で、 淘汰はやや不良、礫率は 40%程度である。礫は概ね水平に並ぶ。基質は粗~中粒砂主体 で、細粒砂~シルトが混じる。植物根を含む。NW12~15 及び SE8~15 に、B4 層及び B5 層の下位に分布する。下限は不明であり、トレンチ内では最大 80 cm 程度が露出する。

B13 層:シルト・砂混じり礫(2.5Y4/3:オリーブ褐色)。シルト・砂の混じる礫からなり、平均礫径は5cm、最大礫径は20cm、亜円礫を主体とし、亜角礫を伴う。礫種は砂岩、 斑レイ岩、安山岩などからなり、釜無川起源の堆積物と考えられる。淘汰はやや不良で、 礫率は30%程度である。基質は中~細粒砂主体で、シルトが混じる。NW9~10 では礫率が 10%程度に下がり、基質もシルト主体となる。NW9~12 及び SE11~12 に、NW 面では B4 層 の下位、SE 面では B12 層の下位に分布する。下限は不明であり、トレンチ内では NW 面 では最大 50cm 程度、SE 面では最大 40cm 程度が露出する。

iii)イベント層準の認定と年代、活動間隔

下蔦木 A トレンチでは堆積物を切断する複数の断層が露出した。断層と地層の切断・被 覆関係から、以下の3つの活動と発生時期が推定される。

イベント1:4層を切り、3層に覆われる。4層から得られている年代のうち、最新の 年代として222~384 cal AD (1566~1728 cal BP:SMT-NW1-11)の年代が得られている。 一方、3a層から得られている年代のうち、最も古い年代として398~539 cal AD (1411 ~1552 cal BP:SMT-NW1-10)の年代が得られている。従って、この断層の活動時期は、 222~539 cal AD (1411~1728 cal BP:約1400~1700年前)と推定される。この年代 は、近傍で実施された三浦・他(2002)の最新活動時期と調和的である。一方、北部区 間と中北部区間の連動イベントと推定された西暦762年もしくは841年の歴史地震には 対応しない。また、南部区間の最新活動時期は約1400~2500年前とされており(例え ば、地震調査研究推進本部地震調査委員会,2015)、この年代と矛盾しない。すなわち、 下蔦木地点では最新活動に伴い南部区間と連動した可能性が示唆される。

イベント2:4e層を切り、4d層に覆われる。4e層からは年代が得られていないが、その下位の5層から得られている年代のうち、最新の年代として 8980~8649 cal BP (SMT-SE-C3)の年代が得られている。一方、4d層からは 5380~5449 cal BP (SMT-NW1-7)及び 4836~4615 cal BP (SMT-NW1-8)の年代が得られている。SMT-NW1-7 は堆積物中の木 片を測定した値であるが、SMT-NW1-8 はバルクで測定した値である。そのため、ここでは SMT-NW1-7 の年代値を採用すると、活動時期は 8649~5380 cal BP (約 5400~8600 年前)と推定される。この年代は、既報の調査による中南部区間の約 6000~8000 年前の活動5 (地震調査研究推進本部地震調査委員会, 2015)と調和的である。一方、南部区間 の活動時期は最新活動に先行する活動 2 が約 7200~8400 年前と推定されており(地震調査研究推進本部地震調査委員会, 2015)、この年代とも矛盾しない。

イベント3:6層を切り、5層に覆われる。6層からは年代が得られていないが、その 下位の7層からは19195~18895 cal BP (SMT-SE-C1)の年代が得られている。一方、5 層下部からは11075~10659 cal BP (SMT-NW1-18)の年代が得られている。従って、こ の断層の活動時期は、18895~11075 cal BP (約 11000~19000 年前)と推定される。

各活動時期の範囲を用いて活動間隔を算出すると、活動1と2では3700~7200年、活 動2と3では2400~13600年となる。また、活動1から3の年代幅をイベント回数-1で 除した場合、約4700~8800年となる。これらは誤差が大きいが、糸静断層帯北部区間、 中北部区間、及び中南部区間の平均活動間隔と比して有意に長く、南部区間よりも短い。 これは、調査地点が全てのイベントを記録していなく、北東側を並走するトレースがよ り高頻度で活動したイベントが存在する可能性を示唆する。その場合、本地点で記録さ れたイベントは連動イベントのみである可能性もある。

iv) 横ずれ変位量の計測

下蔦木 A トレンチでは、断層に斜交して流下した2つのチャネル堆積物を基に左横ず れ量を計測可能である。それらは新しいものから 4b 層、5 層であり、それぞれ最新活動 1回分と2回分を記録している。各チャネル堆積物と横ずれ量の計測結果を図 162 と図 163 にそれぞれ示す。

最新活動に伴う横ずれ量はチャネル堆積物 4b 層の西縁を基準に 3.0m と計測した。東 縁も横ずれ変位を生じているが、古流向が湾曲し相対的に不明瞭なため、ここでは西縁 を変位基準とした変位量を最新活動に伴う横ずれ量とみなした。この横ずれ変位量は、 地表で計測できる流路の横ずれ量が約3mであることと調和的である。

最近2回分の横ずれ量を記録する5層は5a~5c層からなり、薄く幅広いチャネルを充 填する一連の堆積物と判断し、その西縁を変位基準とした。西縁はAトレンチ壁面に広 範囲に露出するが、断層帯近傍では横ずれ変位により分布が見られない場所がある。横 ずれ量の計測にあたっては、層厚が0になる西端だけでなく、流心に向かって厚くなる 分布を等層厚線を描いて検討した。層厚が0cm、10cm、20cmの等層厚線を基準に6.2± 0.2mの横ずれ量を本地点の2回分の横ずれ量と判断した。 v)下蔦木断層における変位履歴と連動確率の試算

下蔦木地点における 3D トレンチ調査の結果、最近活動と1つ前のイベントに伴う横ず れ変位量はそれぞれ約3mで同程度であったと推定された。活動時期からみて、いずれ のイベントも南部区間の活動時期と調和的である。さらに、本地点は下蔦木断層及び中 南部区間の南東末端付近に位置し、3mの地震時変位が中南部区間の単独イベントとし て生じたとは考えにくい。したがって、下蔦木Aトレンチで検出された2回の活動は南 部区間ないし下蔦木断層より南の断層区間と連動したイベントを記録している可能性 が高い。中南部区間の平均活動間隔は約1300~1500年であり(地震調査委員会,2015)、 より高頻度で活動していることから、4~6回に一回の頻度で中南部区間と南部区間が 連動した可能性がある。下蔦木地点の活動1と2の発生間隔である約3700~7200年を 連動間隔とみなせば、ポアソン過程に基づく今後30年以内の連動確率は0.4~0.8%と試 算される。

図 149 下蔦木断層と調査位置 基図は国土地理院発行の都市圏活断層図(澤・他, 1998)を使用。

図 150 下蔦木断層周辺のドローン LiDAR 実施範囲 基図は地理院地図を使用。黒線はフライト位置。

図 151 下蔦木断層周辺のドローン LiDAR による等高線図 等高線間隔は 0.5m。

図 152 下蔦木断層周辺のドローン LiDAR によるモノクロ陰影図 DEM のグリッド間隔は 0.1mメッシュ。

図 153 下蔦木地点の測量図と3Dトレンチ掘削位置

図 154 下蔦木地点のAトレンチの写真

図 155 下蔦木地点のAトレンチ拡張部分の写真

図 156 下蔦木地点のAトレンチ断層平行部分の写真

図 157 下蔦木地点のAトレンチのスケッチ

図 159 下蔦木地点のAトレンチ断層平行部分のスケッチ

図 160 下蔦木地点Bトレンチの写真

図 161 下蔦木地点Bトレンチのスケッチ

図 162 最新活動に伴う横ずれ量の推定

壁面に露出したチャネル堆積物の分布形状(青色)を基に推定。

図 163 最近2回の活動に伴う横ずれ量の推定 壁面に露出したチャネル堆積物の層厚分布(黄緑色:数値は cm)を基に推定。

13) 糸静断層帯全体の連動イベントの整理

本事業と従来の調査研究成果を総合して、糸魚川-静岡構造線断層帯で生じた連動型 地震の発生時期、活動範囲、地震時変位量を整理した。既往の活動時期や地震時変位量は 地震調査研究推進本部地震調査委員会(2015)でまとめられた結果を中心に、個別の調査 地点については文部科学省研究開発局・国土交通省国土地理院・東京大学地震研究所 (2010)を参考にした。各地点間のイベント対比では、地震調査研究推進本部地震調査委員 会(2015)と同様に、単独トレース上で複数回の活動履歴が推定された地点を重視した。 以下では、最も詳細な連動履歴が明らかになった北部区間との連動組み合わせを中心に 北から南へ新しいイベントから整理する。

a) 北部区間と中北部区間の連動イベント

北部区間の神城断層から中北部区間の岡谷断層に至る区間では、最新活動時期が約1200 年前頃もしくは6世紀以降と推定された(図164)。この連動イベントは西暦762年もし くは841年の歴史地震に対比されると考えられる。近藤・他(2014)で指摘したように、 被害記録の詳細さや分布域から判断して、西暦762年の地震が北部区間から中北部区間 を活動範囲とする連動型地震であった可能性が高い。このイベントに伴い、神城断層・木 崎湖南方地点で8.5~10.2mの実変位(近藤,2018)、松本盆地東縁断層北部・池田町会 染地点で5.0mの実変位(近藤・木村,2017)、松本盆地東縁断層南部・豊科高家地点で 7.1±3.6m(近藤・他,2019)、島内地点で6.2~6.9m(近藤・他,2006)、牛伏寺断層・ 並柳地点で7.5±1.5m(奥村・他,1994)、牛伏川地点で6m程度が計測されている。こ の際の活動範囲は北部区間と中北部区間をあわせた、長さ約120kmの範囲が活動したと 考えられる。この場合の地震規模はMj8.0もしくはそれ以上である。

さらに先行する北部区間と中北部区間の連動イベントの候補は、神城断層・木崎湖南方 地点で推定された約4300~4500年前のイベントである。ただし、このイベント発生年代 に相当するイベントは牛伏寺断層では検出されていない。調査地点における地層の欠落 やイベント年代推定の誤差によるものか、このイベントでは牛伏寺断層が連動しなかっ たかのいずれかの可能性が考えられる。地震時変位量からみれば、神城断層・木崎湖南方 地点における本イベントに伴う地震時変位量は8.5m(上下変位2.9mを傾斜20°で換 算)であり、約90kmの地震断層長に相当する。一方、北部区間と中北部区間のうち、牛 伏寺断層以南を除いた断層区間(北部区間から松本盆地東縁断層南部まで)は長さ約65km に過ぎない。そのため、地震時変位量と地震断層長のスケーリング則(松田・他,1980) に基づけば、現時点ではこのイベントに伴い牛伏寺断層以南を含む中北部区間全体が連 動したと考えることが合理的である。よって、北部区間と中北部区間の連動型地震が約 4300~4500年前に生じた可能性が高い。この場合の連動範囲は約120kmの区間となり、 地震規模はMj8.0もしくはそれ以上である。なお、北部区間から松本盆地東縁断層南部 までが連動範囲の場合は長さ約65kmとなり、地震規模はMj7.9程度と推定される。

これらを踏まえて、北部区間と中北部区間の連動型地震の発生間隔は、最新活動を西暦 762年とした場合、約3100~3300年となる。この連動間隔とポアソン過程に基づく今後 30年間の連動型地震の発生確率は0.9~1.0%と試算される。

b) 中北部区間と中南部区間の連動イベント

両区間が連動したイベントは、諏訪湖周辺の活動時期を整理した結果、約 3100~3200 年前に推定される(図 165)。北端は少なくとも神城断層・木崎湖南方地点以南であり、 同地点より北方のトレンチ調査等ではこのイベント相当が検出されていない(例えば、地 震調査研究推進本部地震調査委員会, 2015)。神城断層・木崎湖南方地点では、このイベ ントに伴う地震時変位量は上下変位 0.4m と小さく地震断層末端付近の変位、もしくは地 震断層近傍の地表で生じた受動的変位と示唆される。よって、この連動イベントの北端 は、北部区間の神城断層全体は含まず、松本盆地東縁断層北部の北端までと判断できる。 また、南端についても正確な位置は特定できないが、中南部区間の活動3(約 2900~3200 年前:地震調査研究推進本部地震調査委員会, 2015)に相当するため、中南部区間全体が 活動したと考えられる。本事業による下蔦木地点の 3D トレンチでは、上述のように約 2900~3200年前イベントは検出されていないが、北西約 400mに位置する近藤・他(2005) によるトレンチ調査では、約 2000~3300年前のイベント II が識別されており大きな矛 盾はない。よって、この連動イベントでは、松本盆地東縁断層北部から中北部区間、及び 中南部区間に至る区間で生じたと考えられる。なお、現時点では、この連動イベントに伴 う地震時変位量は計測されていない。

以上から、松本盆地東縁断層北部から中北部区間と中南部区間に至る長さは約78kmとなり、その連動型地震の規模は Mj8.0 程度もしくはそれ以上と推定される。本イベントは約3100~3200年前に生じたと推定され、現時点では過去約1万年間で1回のみ検出されている。仮に先行する連動イベントが最も新しい時期の約1万年前にも生じていた場合には、連動間隔は最小で7000年程度となり、ポアソン過程に基づく今後30年以内の 連動確率は最大で0.4%と試算される。

c) 中南部区間と南部区間の連動イベント

中南部区間と南部区間では詳細な変位履歴が限られているが、現時点で得られている データを基に連動イベントの抽出を試みた。中南部区間の南東端付近に位置する下蔦木 地点の 3D トレンチの結果、最新活動と先行する活動が南部区間との連動イベントである 可能性が得られた。既述のように、最新活動時期は約 1400~1700 年前に生じたと推定さ れ、南部区間の最新活動時期が約 1400~2500 年前であることと矛盾しない。さらに、本 事業による最新活動に伴う横ずれ量が約 3 m と推定されるため、少なくとも下蔦木断層と 南部区間の一部が連動した可能性が指摘できる。ただし、その連動範囲の詳細は現時点で は明らかではない。例えば、中南部区間の茅野断層では対応するイベントが検出されてお らず、複数の断層トレースで構成される釜無山断層群においても、最新活動時期は約 900 ~1300 年前とされ不調和である。よって、現時点では少なくとも下蔦木断層と南部区間 の一部を含む連動イベントが約 1400~1700 年前に生じたと言え、地震時変位量が約 3 m であることから少なくとも約 30km 以上の断層区間が連動したと考えられる。また、同様 に連動範囲は不明であるが、活動時期と地震時変位量からみて、約 5400~8600 年前に連 動イベントが生じた可能性がある。今後、より詳細な変位履歴について特に南部区間にお いても明らかにする必要がある。

以上から、少なくとも下蔦木断層から南部区間を含む範囲で生じた連動イベントが約 1400~1700年前と約5400~8600年前に生じた可能性がある。この場合、暫定的な連動間 隔は約3700~7200年前となり、ポアソン過程に基づく今後30年以内の連動確率は0.4~ 0.8%と試算される。

d) 糸静断層帯全区間(北部~南部区間)の連動イベント

本事業により特定した連動型イベントの時空間分布を図 166 に示した。これまでに実施された調査研究では、本事業による成果を含めて、断層帯全体が連動したと判断できる 連動型地震イベントは検出されていない。活断層の連動性評価において、断層不連続や離 間距離が地震時の応力変化や連動可能性に影響することが知られている(例えば、 Wesnousky, 1988;松田, 1990;Wesnousky, 2008)。この観点で見ると、糸静断層帯で最 も大きな断層不連続は中北部区間と中南部区間の境界であり、この諏訪湖周辺の区間境 界を超える連動型イベントだけが断層帯全体の連動型イベントの候補となり得る。よっ て、現時点では過去約1万年間の中で約2900~3200年前に生じた連動イベントのみが候 補となる。しかし、実際には、本イベントに対比可能なイベントは北部区間の神城断層で は検出されておらず、松本盆地東縁北部のみで認められている。また、南部区間でもこの 連動イベント時期に対応するイベントは検出されていなく、上述のように連動範囲は限 定的である。したがって、糸静断層帯全体が連動するイベントは約1万年間には検出され ておらず、約1万年に1回よりも長い連動間隔と判断できる。この場合、ポアソン過程に 基づく今後30年以内の糸静断層帯全体の連動確率は0.3%未満と試算される。

以上のように、本事業ではこれまで不明とされてきた連動確率を新たに算出するため、 変位履歴に基づく連動型地震の発生確率の算出手法を整理して構築した。ここでは評価 手法を整理して構築することを主眼としたため、活動区間ごとのデータ粗密や信頼度は 考慮できていないが、本評価手法を適用していくためには、より多くの地点で可能な限り 多数回の変位履歴を明らかにする必要がある。例えば、逆断層区間である北部区間の神城 断層では7回のうち2回を顕著な連動型イベントとして抽出できたものの、横ずれ断層 区間である中北部~中南部区間では過去の地震時変位量を復元できた回数に限りがある。 そのため、特に横ずれ断層帯では地震時変位量を復元する調査手法のさらなる改良や、区 間境界付近で精緻な活動時期を集中的に取得する調査戦略などを検討していく必要があ る。さらに、確率評価手法においては、神城断層でみられた時間的クラスタリングに対し て、ポアソン過程による評価をせざるを得ないのが現状である。今後、多峰性分布を考慮 した更新過程に基づく評価手法についても、引き続き検討していく必要がある。

図 164 北部区間の神城断層/松本盆地東縁断層北部の境界における変位履歴と連動イベントのまとめ

図 165 中北部区間/中南部区間のセグメント境界付近における 活動履歴と連動イベントのまとめ

図 166 糸魚川-静岡構造線断層帯における連動履歴・確率試算のまとめ 本事業で連動型地震と判断したイベント(赤,青,緑色ボックス) 関東地域の活断層の長期評価(2015)及び本事業で新たに検出された区間単独の活動時期 (灰色ボックス)

(c) 結論ならびに今後の課題

糸魚川-静岡構造線断層帯の北部区間から中南部区間を対象として、過去の地震時変位量 等の変位履歴に基づき連動確率を試算する評価手法を構築する調査研究を実施し、以下の新 たな知見を得た。北部区間を構成する神城断層のうち2014年長野県北部の地震では活動しな かった中綱湖周辺において平均変位速度を高精度に推定するため、断層の低下側でボーリン グ調査を実施した。その結果、約1.3万年以降の湖沼堆積物を切断する複数の断層をコアに認 め、上下平均変位速度の最小値が1.1mm/yrであることを明らかにした。今後、断層の隆起側 でもボーリング調査を実施し、より正確な累積上下変位量と年代に基づく平均変位速度を明 らかにする必要がある。

また、神城断層の南端付近に位置する、木崎湖南方地点における既往のジオスライサー・ ボーリング調査結果を再検討した。その結果、湖沼性堆積層の撓曲変形だけでなく東傾斜20 ~30°の逆断層を認定し、約1.2万年前以降に4回もしくは6回の地震イベントを識別した。 平均的な上下変位速度は0.9~1.3 mm/yrと求められる。いずれのイベント回数のケースでも 地震時上下変位量が3m程度の活動が2回認められ、変位量と地震断層長のスケーリング則 から判断して、これらは少なくとも神城断層全体と松本盆地東縁断層北部の連動型地震と判 断できる。その平均再来間隔は5400年程度であり、ポアソン過程では同断層の連動確率は30 年で0.6%と試算した。

松本盆地東縁断層北部の池田町会染地区において、S波反射法地震探査及びボーリング調 査を実施し、断層の変位・変形構造を詳細に明らかにした。その結果と既存の活動時期等を 総合して、同地区では過去約1000年前から約8300年前までに3回の活動が生じ、それぞれ5.0 mの地震時変位量を伴っていたと推定した。これらは50km程度の地震断層長に相当し、松本 盆地東縁断層北部が単独で活動したとは考えられないため、いずれのイベントも周辺の断層 と連動したものと判断した。この場合、連動イベントの平均再来間隔は2400年程度であるこ とから、ポアソン過程の場合、同断層の連動確率は30年で1.2%と試算した。今後、各イベン トの正確な変位履歴や長期間の挙動を明らかにする必要がある。

松本盆地東縁断層北部の明科七貴地区でトレンチ調査を実施し、高瀬川の本流性砂礫層を 切断する高角東傾斜の断層をみいだした。最新活動は7~13世紀に生じ、1.2mの上下変位を 伴う。さらに先行する活動は約2400年前以前に限定され、最近2回の活動間隔は最短で1100 年と算出される。今後、横ずれ成分の有無等を検討し、より正確な地震時変位量を復元して、 中北部区間との連動性を検討する必要がある。

北部区間を構成する神城断層のうち2014年長野県北部の地震では活動しなかった中綱湖周 辺において平均変位速度を高精度に求めるため、断層の隆起側と低下側でボーリング調査を 実施した。その結果、約1.9万年以降の湖沼堆積物を切断する複数の断層が認められ、上下平 均変位速度が0.6mm/yr以上、断層低下側の層序を考慮した場合1.4mm/yrである可能性を明ら かにした。さらに、最近の活動時期を推定するため、比高1.5m程度の低断層崖を横断して群 列ジオスライサー調査を実施した。その結果、最新活動は西暦675~1380年に生じたことが明 らかとなった。このイベントは神城断層南部の未破壊区間における最新活動を示し、西暦762 年もしくは841年の歴史地震に対応する可能性が高い。

神城断層の南端付近に位置する、木崎湖南方地点における既往のジオスライサー・ボーリ ング調査結果を再検討した。その結果、湖沼性堆積層の撓曲変形と東傾斜10~20°の逆断層 を複数認定し、約1.4万年前以降に7回の地震イベントを識別した。そのうち地震時上下変位 量が3m程度のイベントは2回認められ、変位量と地震断層長のスケーリング則から判断し て、これらは神城断層全体と少なくとも松本盆地東縁断層北部との連動型地震と判断できる。 その平均再来間隔は3100~3300年であり、ポアソン過程の連動確率は今後30年で0.9~1.0% と試算した。また、最近4回のイベントから求めた平均発生間隔は970~1170年であり、最新 活動時期を970~1370年前とした場合、地震後経過率は80~140%、BPTに基づく今後30年以内 の地震発生確率は6~17%程度と極めて高いことを明らかにした。今後、より長期間の変位履 歴を復元し、多数の連動型イベントと非連動型イベントを検出していく必要がある。

中北部区間を構成する松本盆地東縁断層南部の安曇野市高家地区において、地震時の横ず れ変位量を復元する三次元的なトレンチ・ピット調査を実施した。断層に対して概ね直交方 向に流下した埋没チャネル堆積物をもとに、最新活動に伴う横ずれ量を7.1±3.6mと計測し た。チャネルは7世紀以降に形成されており、西暦762年もしくは841年に対比される活動に 伴い生じたと判断できる。さらに、松本市島内地区において、比高1.5m程度の低断層崖を横 断して三次元的にボーリングを配置し、隆起側に残存する旧河道と低下側の埋没チャネル堆 積物による横ずれ量を予察的に検討した。その結果、埋没チャネル形成以降に2回の横ずれ イベントが生じた可能性が指摘された。今後、年代測定結果を基に、より正確な変位履歴や 長期間の挙動を明らかにする必要がある。

松本盆地東縁断層南部の断層形状を把握するため、田沢測線と岡田測線の2測線において P波反射法地震探査を実施した。田沢測線では、断層西側で松本盆地を埋積する第四系と東 側で城山丘陵を構成する鮮新-更新統及び下部中新統が深さ1.5km程度までイメージングさ れた。これを基に、地表の活断層に連続する断層面の傾斜が東傾斜75°程度であると推定し た。また、岡田測線では、城山丘陵の東縁付近を限る西傾斜の逆断層が深さ200m程度までイ メージングされた。断層面の傾斜は西傾斜40°ないし45°であり、浅部で松本盆地東縁断層 南部と接合する位置関係にある。そのため、これらの西傾斜の逆断層は、松本盆地東縁断層 南部のバックスラストとして解釈され、独立した震源断層としては挙動しない可能性が示唆 された。

糸静断層帯で最大規模の区間境界である諏訪湖周辺において、中北部区間と中南部区間の 連動イベントを検討するため、次の調査を実施した。中北部区間の諏訪湖南岸断層群・岡谷 湊地点において、トレンチ・ボーリング調査を実施した。その結果、周辺では少なくとも 0.9mm/yrの上下変位速度であると推定した。中南部区間の南端付近に位置する下蔦木断層・ 下蔦木地点において3Dトレンチ調査、ドローンLiDAR調査、ボーリング調査等を実施した。 その結果、調査地点において約1万年前以降に3回の活動が推定され、最近2回の活動に伴 う地震時変位量はいずれも約3mであった変位履歴を明らかにした。最新活動は約1400~ 1700年前に生じ、北部~中北部区間の連動イベント(西暦762年もしくは841年の歴史地震) とは異なるイベントである一方、中南部区間との連動イベントである可能性がある。これら の連動履歴から算出される中南部~南部区間の連動間隔は約3700~7200年である可能性があ る。この結果に基づき、ポアソン過程に基づく今後30年間の連動確率を0.4~0.8%と試算し た。また、既存の中北部区間および中南部区間における活動履歴や地震時変位量を総合して、 過去約1万年間に両区間が連動したイベントは約3000~3200年前の1回であることを推定し た。この場合、連動間隔は最小で7000年程度であり、ポアソン過程に基づく今後30年間の連 動確率を0.4%以下と試算した。北部~中南部の3区間に至る連動イベントは、過去1万年間 の変位履歴では検出されなかった。特に、南部区間については活動時期を含めて変位履歴を より正確に復元し、より高い信頼度で連動イベントを抽出する必要がある。

さらに、本事業とこれまでの調査研究による変位履歴に基づき、断層帯で生じた連動型地 震の連動範囲の推定、連動確率の試算結果を整理した。その結果、北部区間と中北部区間が 連動したイベントは、連動範囲は長さ約120km、地震規模はMj8.0程度もしくはそれ以上、連 動間隔は約3100~3300年、今後30年間の連動確率は0.9~1.0%と推定した。北部区間の松本盆 地東縁断層北部から中北部区間と中南部区間を含む連動イベントは約3100~3200年前に生じ、 連動範囲は長さ約78km、地震規模はMj8.0程度もしくはそれ以上、連動間隔は7000年程度以上、 今後30年以内の連動確率は0.4%以下と推定した。中南部区間の下蔦木断層と南部区間が連動 したイベントは、連動範囲と地震規模は不明、暫定的な連動間隔は約3700~7200年、今後30 年以内の連動確率は0.4~0.8%と推定した。糸静断層帯全体の連動イベントは、連動範囲は約 160km、地震規模はMj8.0程度もしくはそれ以上、連動間隔は約1万年以上、今後30年間の連 動確率は0.3%以下と推定した。

本事業で提示した連動確率の試算は変位履歴の信頼性に大きく依存することから、より多 数の地点で地震時変位量とイベントの年代をさらに精緻に復元していく必要がある。また、 本評価手法を適用していくためには、変位様式の相違も考慮して変位履歴を明らかにする必 要がある。例えば、逆断層区間である北部区間の神城断層では7回のうち2回を顕著な連動 型イベントとして抽出できた一方で、横ずれ断層区間である中北部~中南部区間では過去の 地震時変位量を復元できた回数に限りがある。そのため、特に横ずれ断層帯では地震時変位 量を復元する調査手法のさらなる改良や、区間境界付近で精緻な活動時期を集中的に取得す る調査戦略などを検討していく必要がある。また、神城断層の木崎湖南方地点においては変 位履歴から判断して、時間的クラスタリング(活動の集中期)や連動型地震と非連動型地震 の頻度分布がバイモーダルで生じている可能性もあり、それらを考慮した更新過程に基づく 発生確率の評価方法も考案していく必要がある。また、断層の地下形状については、他の研 究項目ともさらに連携を深め、より現実的かつ信頼性の高い断層形状を明らかにしていく必 要がある。

謝辞:野外調査の実施にあたり長野県危機管理防災課、大町市消防防災課、池田町総務 課、安曇野市危機管理課、松本市危機管理課、岡谷市危機管理室、富士見町の各位にご協 力を頂きました。掘削調査地の地権者及び耕作者の方々には、調査の趣旨をご理解頂き、 土地の使用と掘削をご快諾頂きました。明科七貴トレンチでは、法政大学・杉戸信彦氏、 信州大学・原山 智氏、大塚 勉氏、小坂共栄氏、株式会社ダイヤコンサルタント・高瀬 信一氏、安曇野市高家トレンチでは、信州大学・原山 智氏、大塚 勉氏、小坂共栄氏、 専修大・苅谷愛彦氏、株式会社ダイヤコンサルタント・高瀬信一氏、下蔦木トレンチでは 広島大・奥村晃史氏、鶴岡高専・澤祥氏に壁面の解釈について有益な議論を頂きました。 皆様に記して御礼申し上げます。

197

(d) 引用文献

物理探査学会,物理探査ハンドブック 増補改訂版,公益社団法人 物理探査学会,東京, 1045p, 2016.

地震調査研究推進本部地震調査委員会,「糸魚川ー静岡構造線断層帯の長期評価(第二版)」, 60p, 2015.

- Katsube, A., H. Kondo, H. Kurosawa, Surface rupturing earthquakes repeated in the 300 years along the ISTL active fault system, central Japan, Geophysical Research Letter, 10.1002/2017GL073746, 2017.
- 木村治夫・中西利典・丸山 正・安藤亮輔・堀川晴央,糸魚川-静岡構造線活断層系神城 断層における地中レーダー探査,活断層研究,38,1-16,2013.
- 近藤久雄・奥村晃史・杉下一郎・中田 高,糸魚川-静岡構造線断層系・下蔦木断層の活動 履歴と平均変位速度の再検討.活断層研究,25,75-84,2005.
- 近藤久雄・遠田晋次・奥村晃史・高田圭太,糸魚川-静岡構造線活断層系・松本盆地東縁 断層南部に沿う左横ずれ変位地形,地学雑誌,115,208-220,2006.
- Kondo, H., S. Toda, K. Okumura, K. Takada, T. Chiba, A fault scarp in an urban area identified by LiDAR survey: a case study on the Itoigawa-Shizuoka Tectonic Line, central Japan, Geomorphology, 101, 731-739, 2008.
- 近藤久雄・杉戸信彦・木下博久・池田哲哉,高時間分解能堆積物に基づく古地震履歴復元 と不規則な大地震発生 -糸静線活断層系・茅野断層のジオスライサー調査-.日本活断層 学会 2008 年度秋期学術大会, P-09, 2008.
- 近藤久雄・谷口薫・杉戸信彦,糸魚川-静岡構造線活断層系の最新活動に伴う新たな古地 震像.地球惑星科学連合大会,SSS34-14,2014.
- 近藤久雄・谷口薫,糸魚川-静岡構造線活断層系中部の諏訪湖周辺における古地震調査.巨 大地震による複合的地質災害に関する調査・研究報告書,産業技術総合研究所地質調査 総合センター,66,147-158,2014.
- 近藤久雄・木村治夫,変位履歴に基づく連動性評価のための地形地質調査.文部科学省研 究開発局・国立研究開発法人産業技術総合研究所,活断層の評価に関する調査研究「活 断層帯から生じる連動型地震の発生予測に向けた活断層調査研究」平成29年度成果報 告書,3-54,2017.
- 近藤久雄,活断層による連動型地震の発生確率の試算-糸魚川-静岡構造線断層帯・北部区 間の事例-,日本地震学会 2018 年度秋季大会講演要旨集, S09-09, 2018.
- 近藤久雄・木村治夫・杉戸信彦,変位履歴に基づく連動性評価のための地形地質調査.文 部科学省研究開発局・国立研究開発法人産業技術総合研究所,活断層の評価に関する調 査研究「活断層帯から生じる連動型地震の発生予測に向けた活断層調査研究」平成30年 度成果報告書,4-76,2018.
- 近藤久雄・木村治夫・杉戸信彦・下釜耕太・佐伯健太郎・川島裕貴・亀高正男・高岡宏之, 糸魚川-静岡構造線断層帯・松本盆地東縁断層南部における最新活動時期と横ずれ変位 量,日本活断層学会 2019 年度秋季学術大会,0-7,2019.
- Maruyama, S., Takemura, K., Hirata, T., Yamashita, T. and Danhara, T., Petrographic Properties of Visible Tephra Layers in SG93 and SG06 Drill Core

Samples from Lake Suigetsu, Central Japan. Journal of Geography (Chigaku Zasshi), 128, 879-903, 2019.

- 丸山 正・遠田晋次・奥村晃史・三浦大助・佐々木俊法・原口 強・都司嘉宣,より詳し い地震活動履歴解明のための地質学および史料地震学的研究,糸魚川-静岡構線断層帯 における重点的な調査観測平成 17~21 年度成果報告書,文部科学省研究開発局・国土 交通省国土地理院・国立大学法人東京大学地震研究所,230-254,2010.
- 松田時彦・山崎晴雄・中田 高・今泉俊文, 1896 年陸羽地震の地震断層, 東京大学地震研 究所彙報, 55, 795-855, 1980.
- 松田時彦,最大地震規模による日本列島の地震分帯図,地震研究所彙報,65,289-319,1990.
- 松多信尚・池田安隆・東郷正美・今泉俊文・澤 祥, 2万5千分の1都市圏活断層図「松本」,国土地理院技術資料 D1-No. 368, 1999.
- 三浦大助・幡谷竜太・阿部信太郎・青柳恭平・宮腰勝義・井上大栄,糸魚川-静岡構造線活 断層系中~南部のセグメンテーションモデル,地球惑星科学関連学会2002年合同大会, J029-P011, 2002.
- 文部科学省研究開発局・国土交通省国土地理院・東京大学地震研究所,糸魚川-静岡構造線断層帯における重点的な調査観測平成17~21年度成果報告書,362p,2010.
- 奥村晃史・下川浩一・山崎晴雄・佃栄吉,糸魚川-静岡構造線活断層系の最近の地震活動 -牛伏寺断層・松本市並柳地区トレンチ発掘調査-,地震第2輯,46,425-438,1994.
- 奥村晃史・井村隆介・今泉俊文・東郷正美・澤 祥・水野清秀・苅谷愛彦・斉藤英二,糸 魚川ー静岡構造線活断層系北部の最近の断層活動-神城断層・松本盆地東縁断層トレン チ発掘調査. 地震 第2輯, 50, 35-51, 1998.
- 奥村晃史・近藤久雄・遠田晋次・高田圭太・木下博久,糸魚川-静岡構造線断層系神城断 層南端,木崎地区における古地震調査,日本地球惑星科学連合 2007 年大会, S141-004, 2007.
- Ramsey, C. B., Methods for Summarizing Radiocarbon Datasets. Radiocarbon, 59(6), 1809-1833, 2017.
- Reimer, P. J., Bard, E., Bayliss, A., Beck, J. W., Blackwell, P. G., Bronk Ramsey, C., Buck, C. E., Cheng, H., Edwards, R. L., Friedrich, M., Grootes, P. M., Guilderson, T. P., Haflidason, H., Hajdas, I., Hatté, C., Heaton, T. J., Hoffmann, D. L., Hogg, A. G., Hughen, K. A., Kaiser, K. F., Kromer, B., Manning, S. W., Niu, M., Reimer, R. W., Richards, D. A., Scott, E. M., Southon, J. R., Staff, R. A., Turney, C. S. M., & van der Plicht, J., IntCall3 and Marinel3 Radiocarbon Age Calibration Curves 0-50,000 Years cal BP. Radiocarbon, 55(4), 2013.
- Rockwell, T. K., Lindvall, S., Herzberg, M., Murbach, D., Dawson, T. & Berger, G., Paleoseismology of the Johnson Valley, Kickapoo, and Homestead Valley faults: Clustering of earthquakes in the Eastern California Shear Zone, Bull. seism. Soc. Am., 90, 1200–1236, 2000.
- 澤祥・東郷正美・今泉俊文・池田安隆, 1:25,000 都市圏活断層図「茅野」,国土地理院, 1998.

- Sieh, K., Stuiver, M., Brillinger, D., A more precise chronology of earthquakes produced by the San Andreas Fault in Southern California, JGR 94(B1), 603-623, DOI: 10.1029/JB094iB01p00603, 1989.
- 遠田晋次・奥村晃史・三浦大助・原口 強・都司嘉宣,より詳しい地震活動履歴解明のため の地質学および資料地震学的研究.糸魚川-静岡構造線断層帯における重点的な調査観 測平成 19 年度成果報告書,糸魚川-静岡構造線断層帯における重点的な調査観測,文 部科学省研究開発局,国土交通省国土地理院,国立大学法人東京大学地震研究所,84-95,2008.
- 東郷正美・池田安隆・今泉俊文・澤祥・松多信尚,1:25,000 都市圏活断層図「信濃池田」, 国土地理院技術資料 D.1-No.368, 1999.
- 都司嘉宣, 糸静線付近に起きた正徳4年(1714)信州小谷地震と安政5年(1858)大町地 震の詳細震度分布, P035, 日本地震学会2003年秋季大会講演要旨集, 2003.
- Une, H., On the tectonic landforms in the northwestern part of the Nagano Prefecture, central Japan. Bull. Geogr. Surv. Inst., 29, 88-101, 1985.
- 宇佐美龍夫・石井 寿・今村隆正・武村雅之・松浦律子,「日本被害地震総覧 599-2012」, 東京大学出版会,東京, 694p, 2013.
- Wallace R. E., Grouping and migration of surface faulting and variations in slip rates on faults in the Great Basin province, Bull. seism. Soc. Am., 77, 868-876, 1987.
- Wesnousky, S. G., Seismological and structural evolution of strike-slip faults, Nature, 335,340-343, 1988.
- Wesnousky, S.G., Displacement and geometrical characteristics of earthquake surface ruptures: Issues and implications for seismic-hazard analysis and the process of earthquake rupture.Bull. Seismol. Soc. Am. 98, 1609–1632, 2008.
- 山崎晴雄・下川浩一・水野清秀・鹿島 薫,日本海東縁部およびフォッサマグナ周辺の地震 テクトニクスの研究―地殻構造調査.科学技術振興調整費「中部日本活構造地域の地震 テクトニクスに関する研究」第 I 期,第 II 期成果報告書, 69-79, 1991.