表1-2 函館平野西縁断層帯(海域延長部)の総括表

項目	地震調査委員会(2001)による評価(海域部*)	今回調査の結果
1.断層帯の位置・形状		
(1)断層帯を構成する断層	3条の断層 (海上保安庁(2000)のF1~F3断層)	F1断層、F2断層、F3断層、F4断層、F5断層、F6断層 海底面の様相から副次的な断層(flexural-slip fault)も発達していると推定さ
(2)断層帯の位置・形状		(F1断層~F4断層をつないだセグメント)
断層の位置(両端の緯度・経度)) 北端:140°37'40, 41°47'50	北端:140°37'42, 41°47'44
	南端:140°36'35, 41°42'30	南端:140°37'07, 41°40'55
長さ	10 km	13 km
上端の深さ	不明	断層面上端が見えていないので不明
一般走向	N10°E	N10°E
傾斜	西傾斜	西傾斜
幅	不明	不明
(3) 断層のずれの向きと種類	逆断層	逆断層(副次的な断層を伴う)
2. 断層の過去の活動		
(1) 平均的なずれの速度	不明	鉛直成分で最大0.3mm/yr程度
(2) 過去の活動時期	不明	13,270-13,100 cal. yrBP以後に活動あり
(3) 1回のずれの量と平均活動間	隔	
1回のずれの量	不明	不明
平均活動間隔	不明	不明
<u>(4) 過去の活動区間</u>	不明	不明

*評価報告書の図の読み取りを含む.

調査項目	測線数·採泥地点数	総測線長・採泥長など
マルチチャンネル音波探査	19測線	209.6km
シングルチャンネル音波探査	38測線	128km
柱状採泥	10地点	16.5m
地形断面測量	1測線	480m
ピット掘削	5地点	深度1.7m (3地点) 深度0.7m (2地点)

表2.2-1 函館平野西縁断層帯(海域部)の調査項目および数量

表2.2-2 マルチチャンネル音波探査の探査仕様

発振系	
音源	ブーマー AA301型 (Applied Acoustic Engineering社)
音源出力	200 J
音源周波数	300-3800 Hz
発振間隔	1.25 m
受振系	
受振器	ショートストリーマ (総合地質調査(株))
受振チャンネル数	12 ch
受振器間隔	2.5 m
収録系	
探鉱機	LX-110 (TEAC社)
サンプリング周波数	t 10000 Hz (0.1 msec)
記録長	A/D変換時に0.6 secにカット
船位測定	DGPS(Trimble社製DSM232)

表2.2-3 マルチチャンネル音波探査測線数および測線長

測線番号	調査日	測位点	方 向	測線	長(km)*	備考
GSH_1	8月21日	#1~28	E→W	3.2		
GSH_1-2	8月22日	#1~12	NE→SW	1.2		
GSH_1-3	8月22日	#1~ 35	NE→SW	4.2		
GSH_2	8月21日	#1~ 34	E→W	4.0		
GSH_2-2	8月22日	#1~20	E→W	2.3	(0.12)	GSH_2-2 #19-20 = GSH_2-3 #1-2
GSH_2-3	8月22日	#1~ 13	E→W	1.5		
GSH_2.5	8月26日	#1~25	E→W	2.9		
GSH_3	8月19日	#1~10	E→W	1.1	(0.50)	GSH_3 #6-10 = GSH_3-2 #1-5
GSH_3-2	8月19日	#1~ 49	E→W	5.9	(1.37)	GSH_3-2#37-48 = GSH_3-3#7-18
GSH_3-3	8月20日	#1~18	E→W	2.1		再測測線
GSH_4	8月20日	#1~ 51	E→W	5.9	(0.62)	GSH_4 #44-51 = GSH_4-2 #18-23 = GSH_4-3 #4-11
GSH_4-2	8月26日	#1~23	SE→NW	2.7	(1.25)	再測測線 GSH_4-2 #15-23 = GSH_4-3 #1-11
GSH_4-3	8月26日	#1~12	SE→NW	1.3		再測測線
GSH_5	8月20日	#1~ 55	E→W	6.7		
GSH_6	8月24日	#1~6 9	E→W	8.4		
GSH_7	8月24日	#1 ~ 105	E→W	12.9		
GSH_8	8月25日	#1~80	E→W	9.8	(0.50)	GSH_8 #1-5 = GSH_8-2 #85~89
GSH_8-2	8月25日	#1~ 89	E→W	11.0		
GSH_9	8月25日	#1 ~ 125	W→E	15.4		
GSH_10	8月28日	#1~ 93	E→W	11.5		
GSH_10-2	8月28日	#1~ 46	E→W	5.5		
GSH_10.5	8月30日	#1~ 89	E→W	11.0		
GSH_11	8月29日	#1~11 9	E→W	14.7	(3.75)	GSH_11 #1-31 = GSH11-2 #25-55
GSH_11-2	8月30日	#1~ 55	E→W	6.7		再測測線
GSH_A	8月21日	#1~8	S→N	0.8		
GSH_A-2	8月21日	#1~ 67	S→N	8.2		
GSH_B	8月19日	#1~22	SW→NE	2.6	(0.37)	GSH_B #1-4 = GSH_B-2 #19-22
GSH_B-2	8月19日	#1~ 76	SW→NE	9.3		
GSH_C	8月29日	#1 ~ 109	N→S	13.5		
GSH_D	8月20日	#1~18	SE→NW	2.1	(0.50)	GSH_D#14-18 = GSH_D-2#1-5
GSH_D-2	8月20日	#1~ 49	SE→NW	5.8		
GSH_E	8月26日	#1~ 33	SE→NW	3.9		
GSH_F	8月26日	#1~9 <u>4</u>	<u>N→S</u>	11.5		
	合	計		209.6	(8.9)	200.70

*()の値は再測による重複部の長さ.重複範囲は備考欄に測線名と測位点で示す.

表2.2-4 シングルチャンネル音波探査(SES2000)の探査仕様

音波探査装置	ES2000地層探査機(Innomar社製)
ビーム幅	±1.8° (0.22 x 0.22)m ²
発信周波数	一次周波数:100 kHz
	二次周波数:5, 6, 8, 10, 12, 15 kHz
パルス幅	66 μSec~500 μSec
更新レート	最大30回/sec(水深・探査深度により異なる)
レンジ	5m~200m
探査深度	最大40m(周波数・底質に依存)
地層分解能	5cm程度の判別が可能(周波数・底質に依存)
精度	100kHz:0.02m + 0.02% of Depth
	10kHz:0.04m + 0.02% of Depth
入力データ	GPSデータ(NMEA・ASCII)
動揺センサー	DMS-05(TSS社製)
船位測定	D-GPS(VS100, Hemisphere社製)

表2.2-5 シングルチャンネル音波探査の探査仕様比較

	ソノプローブ	StrataBox	ES2000地層探査機
	(カイジョー社製)	(SyQwest社製)	(Innomar社製)
ビーム幅	65°	40°	±1.8°
			一次周波数
登信国波数	2kHz~8kHz	10 kHz	100 kHz
无后向放致	(卓越:3.5kHz)		二次周波数
			5, 6, 8, 10, 12, 15 kHz
パルス幅	-	1 msec~8 msec	0.6 msec~5 msec
更新レート	最大6回/sec	最大10回/sec	最大30回/sec
		(水深・探査深度に依存)	(水深・探査深度に依存)
レンジ	0 m∼150 m	5m~200m	5m~200m
探査深度	30 m∼50 m	最大40m	最大40m
바로스께서		(水深・底質に依存)	(水深・底質に依存)
地僧分解能	0.5 m∼1 m	6 CM	5cm以上
精度	-	0.5% of Depth	100kHz:0.02m + 0.02% of Depth
			10kHz:0.04m + 0.02% of Depth

表2.2-6 採泥点座標一覧

採泥点名	X座標(m)	Y座標(m)	并	諱度	糸	度	予定水深	采泥試料名
No.1	31326.4	-252022.1	44°14′	18.10″N	137°05′	41.62″E	54m	No.1
No.1-2	31377.8	-252012.9	44°14′	19.78″N	137°05′	41.94″E	54m	No.1-2
No.2	31667.0	-252003.6	44°14′	29.15″N	137°05′	41.86″E	56m	No.2
No.3	29795.4	-253561.5	44°13′	26.65″N	137°04′	35.01″E	56m	No.3
No.4	29939.6	-253532.6	44°13′	31.36″N	137°04′	36.06″E	57m	No.4
No.5	33094.6	-250677.7	44°15′	16.98″N	137°06′	39.07″E	55m	No.5
No.6	32407.1	-251986.2	44°14′	53.11″N	137°05′	41.36″E	57m	No.6
No.7	30540.4	-253501.8	44°13′	50.83″N	137°04′	36.40″E	63m	No.7
No.8	31882.1	-253540.6	44°14′	34.19″N	137°04′	32.32″E	65m	No.8
No.8	31888.4	-253541.2	44°14′	34.39″N	137°04′	32.28″E	65m	No.8-2
No.9	32625.2	-251913.6	44°15′	00.26″N	137°05′	44.25″E	-	No.9
No.10	32594.8	-251966.1	44°14′	59.21″N	137°05′	41.94″E	-	No.10

XY座標はJGD2000平面直角座標第11系を使用 緯度経度は世界測地系による

表2.2-7 柱状採泥データ

試料名	採取長 ^(cm)	C.C	sec.1	sec.2	sec.3	sec.4	sec.5	sec.6	sec.7	コアラ-	SES 測線名	SESの カット点	備考
No.1	(40)	-	40	\ge	\ge	\geq	\geq	\geq	\geq	7mグラビティ	GSH_5	10.04	試掘、不採用
No.1-2	177	-	96	81	\ge	\geq	\geq	\geq		6mバイブロ	GSH_5	9.83	
No.2	39	-	39	\ge	\geq	\geq	\geq	\geq		6mバイブロ	GSH_5	8.68	
No.3	94	23	71	\ge	\geq	\geq	\geq	\geq		6mバイブロ	GSH_6	13.46	cc採取時の伸張?あり
No.4	240	46	100	94	\ge	\geq	\geq	\geq		6mバイブロ	GSH_6	14.03	cc採取時の伸張?あり
No.8	(60)	-	60	\ge	\geq	\geq	\geq	\geq]	6mバイブロ	GSH_6	21.81	不採用
No.8-2	68	-	68	\ge	\geq	\geq	\geq	\geq		6mバイブロ	GSH_6	21.83	
No.7	80	-	80	\ge	\geq	\geq	\geq	\geq		6mバイブロ	GSH_6	16.43	
No.10	219	18	92	96	13	\ge	\geq	\geq		6mバイブロ	GSH_5	4.84	
No.5	154	-	95	59	\ge	\geq	\geq	\geq		6mバイブロ	GSH_4	11.08	
No.6	106	-	91	15	\ge	\geq	\geq	\geq		6mバイブロ	GSH_5	5.72	
No.9	324	-	100	100	100	24	\succ	\succ		6mバイブロ	GSH_5	4.97	No.9のほぼ点上

表2.2-8 ピット掘削地点座標一覧

ニット掘削	rX座標(m))Y座標(m)	緯度	彩	隆度
1	22975.3	-255216.3	44°09′43.94″N	137°03′	32.48″E
2	22999.9	-255241.6	44°09′44.70″N	137°03′	31.30″E
3	23002.7	-255243.8	44°09′44.79″N	137°03′	31.20″E
4	23037.2	-255293.6	44°09′45.84″N	137°03′	28.90″E
5	23060.5	-255321.5	44°09′46.56″N	137°03′	27.61″E

XY座標はJGD2000平面直角座標第11系を使用

		松前半島	海域
Holocene		沖積層 段丘礫層	A
	te		B1
ene	La		B2
eistoc	eistoc ^{Middle}	文月層	В3
ľ	Early	富川層 (1−2Ma)	С
Pliocene	Early Late	茂辺地川層 (4.5Ma,ca.2 [_] 5Ma)	D
ene	Late	木古内層(6.8,10.3Ma)	
Mioce	Middele	訓縫層	E

表3.2-1 調査海域の音響層序

表6.1-1 採泥コアの放射性炭素年代測定結果

試料名	測定機関 ID	試料種	測定方法	未補正 ¹⁴ C年代 (vr BP)	δ ¹³ C (‰)	補正 ¹⁴ C年代 (vr BP)	暦年代* (cal. yr BP)	暦年代* (cal. yr BC/AD)
HD3-040	Beta- 311650	shell	AMS	11520 ± 50	0.1	11930 ± 50	13430 - 13290	BC 11480 - 11340
HD4-055	Beta- 311651	wood	AMS	27220 ± ##	-25.6	27210 ± 130	31510 - 31270	BC 29560 - 29320
HD4-167	Beta- 311652	organic sediment	AMS	41730 ± ##	-29.4	31660 ± 360	45600 - 44650	BC 43650 - 42700
HD6-063	Beta- 311653	shell	AMS	4500 ± 40	0.8	4920 ± 40	5310 - 5190 5140 - 5130	BC 3360 3240 BC 3190 3180
HD6-073	Beta- 311654	shell	AMS	6050 ± 30	-0.4	6450 ± 30	7000 - 6870	BC 5050 - 4920
HD9-036	Beta- 311655	shell	AMS	1750 ± 30	0.3	2160 ± 30	1820 - 1680	AD 140 - 270
HD9-240	Beta- 311656	wood	AMS	11390 ± 50	-27.6	11350 ± 50	13310 - 13140	BC 11360 - 11190
HD9-280	Beta- 311657	wood	AMS	11300 ± 50	-26.0	11280 ± 50	13270 - 13100	BC 11320 - 11150
HD10-027	Beta- 311658	shell	AMS	960 ± 30	-1.0	1350 ± 30	940 - 830	AD 1010 - 1120
HD10-113	Beta- 311659	shell	AMS	4840 ± 30	-2.1	5220 ± 30	5620 - 5550	BC 3670 - 3600
HD10-119	Beta- 311660	shell	AMS	5810 ± 30	1.7	6250 ± 30	6760 - 6630	BC 4810 - 4680

*2sigma calibrated result

暦年代は補正¹⁴C年代測定値と暦年較正曲線IntCal04(Remer et al.,2004)に基づいて算出した.

表8-1 函館平野西縁断層帯(海域延長部)の総括表

項目	今回調査を含めた結果
1.断層帯の位置・形状	
(1)断層帯を構成する断層	F1断層、F2断層、F3断層、F4断層、F5断層、F6断層、F7断層 海底面の様相から副次的な断層(flexural-slip fault)も発達していると推定され
(2)断層帯の位置・形状	(F1断層-F2断層-F3断層をつないだセグメント)
断層の位置(両端の緯度・経度)	北端:140°37'42, 41°47'44
	南端:140°37'07, 41°40'55
長さ	13 km
上端の深さ	断層面上端が見えていないので不明
一般走向	N10°E
傾斜	西傾斜
幅	不明
<u>(3) 断層のずれの向きと種類</u>	逆断層で上盤に副次的な断層を伴う.
2. 断層の過去の活動	
(1)平均的なずれの速度	鉛直成分で最大0.3mm/yr程度
(2)過去の活動時期	13,270-13,100 cal. yrBP以後に活動あり
(3) 1回のずれの量と平均活動間隔	R R
1回のずれの量	不明
平均活動間隔	不明
<u>(4) 過去の活動区間</u>	不明

図 1.1-1 松前半島の地質図

地質図は地質調査所(1984),活断層は平川ほか(2000)および海上保安庁(2000),中田・今泉編 (2002)に基づく.図中の記号はそれぞれ, a沖積層;p湿原堆積物;Ko駒ヶ岳火山の降下再堆積物及び 泥流堆積物(以上完新統),NI 泣面山溶岩;YI 横津岳溶岩;Ky木地挽山溶岩;Fm文月層;Is 磯谷川火 砕岩(以上更新統),SI/Sa 知内火山岩類,函館山火山岩類(以上鮮新統~更新統),St 富川層イデス川層; Tm 館層(以上鮮新統),雁皮山溶岩;Tv峠下火砕岩類;As厚沢部層(以上上部中新統),Ym木古内層; Kv/Ks 訓縫層(以上中部中新統),Fa 福山層(以上下部中新統),Ki 上磯層群;Mm 松前層群(以上先第 三系)を表す.f1~f5 は宮内・八木(1984)に示された陸域活断層.

図 1.1-2 海上保安庁による調査位置図(上)と断層分布図(下)(森下ほか,2002 による) a: ユニブーム, b: チャープソナー, c: スパーカーとチャープソナー

図 1.1-3 調査位置図(a)と断層分布図(b) 電源開発株式会社(2007)参考資料第 109C-35-3 号および 4 号から抜粋,累重表示.

図 1.2-1 函館平野西縁断層帯の位置及び構成する断層 地震調査研究推進本部地震調査委員会(2001)による.

図2.2-1 高分解能マルチチャンネル音波探査測線図

陰影図は国土地理院発行10mDEM,海底地形図は日本水路協会発行海底地形デジタルデータ「M7006 津軽海峡東部」に基づく.

図2.2-1 高分解能マルチチャンネル音波探査測線図

陰影図は国土地理院発行10mDEM,海底地形図は日本水路協会発行海底地形デジタルデータ「M7006 津軽海峡東部」に基づく.

図 2.2-2 マルチチャンネル音波探査データの処理フロー図

41°45N'

40N'

41°

図2.2.3 シングルチャンネル高分解音波探査測線図

図2.2-5 海成段丘調査位置図

図3.1-1 函館湾-津軽海峡周辺の海底地形

140°30'E

図 3.1-2 函館湾-津軽海峡周辺の底質

上磯町上磯地区漁場基本図1:10000,木古内町渡島(木古内町)地区漁場環境図1:25000)による

図4.1-1 高分解能マルチチャンネル音波探査による断層分布図

図 4.1.1-1 GSH_1-3 測線の重合断面

図 4.1.1-2 GSH_2.5 測線の重合断面

Boomer GSH_3 and 3-2

図 4.1.1-3 GSH_3 および GSH_3-2 測線の重合断面

図 4.1.1-4 GSH_3-3 測線の重合断面

図 4.1.2-1 GSH_4 測線の重合断面

図 4.1.2-2 GSH_4-2 および GSH_4-3 測線の重合断面

Boomer GSH_5

図 4.1.2-3 GSH_5 測線の重合断面

図 4.1.2-4 GSH_E 測線の重合断面

図 4.1.2-5 GSH_6 測線の重合断面

図 4.1.2-6 GSH_7 測線の重合断面

図 4.1.3-1 GSH_8 測線の重合断面

図 4.1.3-2 GSH_9 測線の重合断面

図 4.1.3-3 GSH_10 および GSH_10-2 (上),GSH_10.5 (中),GSH_11 および GSH_11-2 (下) 測線の重合断面

図5.1.1-8 GSH_3-3測線反射記録断面および地質解釈

図5.1.1-9 SES_7測線反射記録断面および地質解釈

図5.1.2-1 GSH_4測線反射記録断面にみられるチャネル状地形

41°45N'

40N'

4 °

図5.1.2-5 A層基底面に確認された撓曲変形の位置

図5.1.2-6 最上位層(A層)等層厚線図

41°45N′

図 6.1-1 GSH_5 測線上のコア柱状図

A GSH-6

 \mathbf{B}_{GSH-4}

図 6.1-2 GSH_6 測線(A), GSH_4 測線(B) 上のコア柱状図

年代測定値には、補正14C年代(yBP)を用いた.()内に試料採取位置をコア上端からの深度で示した.

年代測定値には、補正14C年代(yBP)を用いた.()内に試料採取位置をコア上端からの深度で示した.

図 7.1-1 地形断面および地質調査をおこなったピットの位置 囲み数字はピットの位置、完新世段丘を区分する段差はピット2と3の間に位置する.

2 —

図 7.2-1 ピット断面の柱状図

図 7.3-1 地形断面と海岸線前進速度の推算値

図2.2-5 海成段丘調査位置図

図4.1-1 高分解能マルチチャンネル音波探査による断層分布図

図5.1.1-8 GSH_3-3測線反射記録断面および地質解釈

図5.1.1-9 SES_7測線反射記録断面および地質解釈

図5.1.2-5 A層基底面に確認された撓曲変形の位置

41°45N′

40N'

41°

図5.1.2-6 最上位層(A層)等層厚線図

41°45N'

40N'

41°