三陸沖から房総沖にかけての地震活動の長期評価の一部改訂について

平成21年3月9日 地震調査研究推進本部 地震調査委員会

地震調査研究推進本部は、「地震調査研究の推進について –地震に関する 観測、測量、調査及び研究の推進についての総合的かつ基本的な施策–」(平 成11年4月23日)を決定し、この中において、「全国を概観した地震動予測地 図」の作成を当面推進すべき地震調査研究の主要な課題とし、また「陸域の浅 い地震、あるいは、海溝型地震の発生可能性の長期的な確率評価を行う」とし た。

地震調査委員会では、この決定を踏まえつつ、これまでに、海域に発生する プレート間大地震(海溝型地震)として、宮城県沖地震、南海トラフの地震、 三陸沖から房総沖にかけての地震活動、千島海溝沿いの地震活動、日本海東縁 部の地震活動、日向灘および南西諸島海溝周辺の地震活動及び相模トラフ沿い の地震活動の長期評価を行い、公表した。

今回、これまでに長期評価を行った三陸沖から房総沖にかけての地震活動の うち、茨城県沖で想定した地震が発生したことから(平成20年5月8日の茨城県 沖の地震(M7.0))、茨城県沖の地震の長期評価を見直すとともに、三陸沖か ら房総沖にかけての地震活動の長期評価について、前回の公表から時間が経過 したため、地震発生確率等、記述の一部を更新した。

なお、評価に用いられたデータは量及び質において一様ではなく、そのため にそれぞれの評価の結果についても精粗がある。平成15年以降に発表した長期 評価からは、評価の結果の信頼度を付与しており、今回の見直しに併せて信頼 度を追加した。

平	成	214	Ŧ 3	3 月	9	日
地	喪調	査	研究	2推:	進本	部
地	震	調	査	委	員	会

三陸沖から房総沖にかけての地震活動の長期評価(一部改訂)

三陸沖から房総沖までの太平洋沿岸を含む日本海溝沿いの地域では、過去に大地震が 数多く発生していることが知られている。本報告書は、日本海溝沿いのうち図1に示す 三陸沖から房総沖までの領域を対象とし、長期的な観点で地震発生の可能性、震源域の 形態等について評価してとりまとめたものである。評価にあたっては、これらの領域に 発生した地震について行われたこれまでの調査研究の成果、「宮城県沖地震の長期評価」 (地震調査委員会,2000)等を参考にした。

1 地震の発生領域及び震源域の形態

日本海溝沿いに発生する地震は、主に、本州がのっている陸のプレートの下へ太 平洋側から太平洋プレートが沈み込むことに伴って、これら2つのプレートの境界 面(以下「プレート境界面」という。)が破壊する(ずれる)ことによって発生す る。また、時によっては1933年の三陸地震のように太平洋プレート内部が破壊する ことによって起こることもある。

1-1 過去の地震の震源域について

過去に日本海溝沿いで発生した地震の震源域については、表1のとおり。 三陸沖北部および茨城県沖以外の三陸沖から房総沖にかけては、同一の震源域で 繰り返し発生している大地震がほとんど知られていないため、表1に整理されてい る地震等を根拠として、震源域を図1のような領域に分けて設定した。

1-2 次の地震の発生位置及び震源域の形態について

次の地震の発生位置(領域)及び震源域の形態は、大地震の記録が比較的多く残 っている三陸沖北部については、大地震の発生状況を踏まえて、一番最近の1968年 十勝沖地震を当該海域で発生する代表例と考え、図2-1のようになる可能性が高 いとした。茨城県沖についても地震の発生状況を踏まえ、1982年及び2008年の地震 の解析結果等を参考に、図2-2のようになる可能性が高いとした。また、三陸沖 北部及び茨城県沖以外の三陸沖から房総沖にかけては、表1に整理されている地震 の発生状況を踏まえ、震源域は特定できないものの図1に示したそれぞれの領域内 のプレート境界付近(但し、三陸沖北部から房総沖の海溝寄りのプレート内大地震 (正断層型)に関しては、太平洋プレート内部)で発生する可能性が高いと考えた。 なお、宮城県沖地震及び房総沖のフィリピン海プレートの沈み込みに伴う地震につ いては別途評価がなされているため本報告では評価しなかった。

2 地震活動

歴史地震の記録や観測成果の中に記述された、津波の記録、震度分布等に基づく 調査研究の成果を吟味し、三陸沖北部〜房総沖における大地震を**表2**のように整理 した。領域分けを行った個々の領域内において、繰り返して発生する最大規模の地 震をここでは固有地震^{*1}として扱うこととし、それより規模の小さい地震や繰り返し

^{*1} 固有地震モデルとは、Schwartz and Coppersmith (1984, 1986)のいう Characteristic earthquake model の訳(垣見, 1989)で、「個々の断層またはそのセグメントからは、基本的にほぼ同じ(最大もしくはそれに近い)規模の地震が繰り返し発生する」というもの。本報告では、固有地震をその領域内で繰り返し発生する最大規模の地震と定義した。

のはっきりしない地震は固有地震としては扱わなかった。なお、茨城県沖について は、同じ領域で20年程度の間隔で比較的規模の大きい地震が繰り返し発生している。 そして、2008年の地震のように比較的規模の大きな前震と本震が発生した場合と、1 982年のように1回の地震の場合があることから、この領域では複数のアスペリティ が別々にすべる場合と、同時にすべる場合があると考えた。本評価では、ある年代 の複数または1つの地震をまとめて一つの活動として扱い、20年程度で繰り返す地 震活動を茨城県沖における一連の地震として扱った。津波の記録、震度分布等に基 づく調査研究の成果を吟味し、各領域で評価した地震(**表2**)及びそれを踏まえた 次の地震の評価結果は次のとおりである。

2-1 過去の地震について

三陸沖北部〜房総沖の日本海溝沿いに発生した大地震については、869年の三陸沖 の地震まで遡って確認された研究成果がある。しかし、16世紀以前については、資料 の不足により、地震の見落としの可能性が高い。以下ではこのことを考慮した。

(1) 三陸沖北部のプレート間大地震

過去の三陸沖北部の地震については、津波被害の記録が残るような大地震が17世紀 以降現在までの約400年間に4回発生した可能性があると考えた。また、このうち少 なくとも最近の3回の地震は多数の死傷者が出ている。4回の地震の発生間隔は85. 8年から111.8年までの範囲にあり、平均発生(活動)間隔は97.0年となる。最新の発 生が1968年5月16日であることから、最新発生からの経過時間は2009年1月1日現在 で40.6年となり、平均発生間隔の4~5割が経過したことになる。これらの地震は、 ほぼ同じ場所で繰り返し発生し、この領域における最大規模またはそれに近い地震と みなされることから、固有地震として扱った。過去の地震の規模は、M(マグニチュ ード)7.4~M7.9(Mt^{*1}7.6~Mt8.2)である(**表2**参照)。三陸沖北部のプレート間大 地震の発生領域、震源域の形態、発生間隔等は**表3-1**にまとめた。

なお、三陸沖北部において、上記4回の地震以外で、規模は一回り小さいが死傷者 を伴った地震については、(4)で別途取り扱うこととした。

(2) 三陸沖北部から房総沖の海溝寄りのプレート間大地震(津波地震^{*2})

三陸沖北部から房総沖の海溝寄りの領域については、過去にM8クラスの地震が幾つか知られている。そのうち1933年の三陸沖のものはプレート内で発生した正断層型の地震であり性質が異なるため次の項目で扱うこととし、ここではそれ以外の大地震を評価した。

日本海溝付近のプレート間で発生したM8クラスの地震は17世紀以降では、1611年 の三陸沖、1677年11月の房総沖、明治三陸地震と称される1896年の三陸沖(中部海溝 寄り)が知られており、津波等により大きな被害をもたらした。よって、三陸沖北部

^{*1} Mt は「津波マグニチュード」のことである。地震の規模を表すマグニチュード(M)は、地震波(地震動)の大きさ(揺れの大き さ)の分布を使って算出するのに対して、Mt は、津波の高さの分布を使って算出する地震の大きさの指標である。Mt を決める計算式 の係数は、Mt がモーメントマグニチュードMw と同じになるように決められている(Abe, 1981)。津波の遡上高をデータとして工夫し て用いることで、潮位観測データがない歴史地震にも適用可能(阿部, 1999)であり、歴史地震のMwを推定する上で信頼性が高い。な お、Mw は、震源の物理学的な規模を表す地震モーメントという量から決められるマグニチュードである。

この報告書で示す過去の地震のMの値は、1884年以前のものについては近代観測によらず被害などから推定されたものであり、必ずしもそれ以後のMと十分に整合性が取れているとは限らない。一方において、Mt は比較的信頼性が高い津波に関する記述に基づいていることから、相互の大小を比較する上でより信頼性が高いと考えられる。

^{*&}lt;sup>2</sup>「津波地震」とは、断層が通常よりゆっくりとずれて、人が感じる揺れが小さくても、発生する津波の規模が大きくなるような地震のことである。この報告書では、Mtの値がMの値に比べ0.5以上大きい(阿部,1988)か、津波による顕著な災害が記録されているに も係わらず顕著な震害が記録されていないものについて津波地震として扱うことにした。1896年の明治三陸地震津波を引き起こした地 震が津波地震の例として有名である。

~房総沖全体では同様の地震が約400年に3回発生しているとすると、133年に1回程度、M8クラスの地震が起こったと考えられる。これらの地震は、同じ場所で繰り返し発生しているとは言いがたいため、固有地震としては扱わなかった。三陸沖北部から房総沖の海溝寄りのプレート間大地震の発生領域、震源域の形態、発生間隔等は表 3-2にまとめた。

(3) 三陸沖北部から房総沖の海溝寄りのプレート内大地震(正断層型)

過去の三陸沖北部から房総沖にかけてのプレート内正断層型大地震で、津波等によ り大きな被害をもたらしたものは、三陸沖で1933年に発生したものが唯一知られてい るだけである。したがって、過去400年間に1933年の地震が1回のみ発生したことか ら、このような地震は400年以上の間隔を持つと推定される。一方、世界の沈み込み 帯で発生する正断層型地震の総モーメントの推定から、このようなプレート内の正断 層型の地震については、三陸沖北部~房総沖全体では750年に1回程度発生している と計算される。これらから三陸沖北部~房総沖全体ではこのような地震は400~750 年の間隔を持って発生したと考えた。しかし、このようなプレート内正断層型大地震 は、1回しか知られていない地震であるので、固有地震としては扱わなかった。三陸 沖北部から房総沖にかけてのプレート内大地震(正断層型)の発生領域、震源域の形 態、発生間隔等は**表3-3**にまとめた。

なお、房総沖で1953年に発生した地震は、そのメカニズムからプレート内の正断層型の地震と考えられている。また、1909年の房総沖の地震についても1953年と同じようなタイプの地震と考えられている。しかし、両者とも大きな被害は無く、1933年の地震に比べ一回り小さな地震であると考えられることから、これら二つの地震については、発生間隔等の評価対象とはしなかった。

(4) 上記(1)~(3) 以外の地震

三陸沖北部〜房総沖における個別の領域について、(1)〜(3)以外の地震で過 去に複数の死傷者の出る被害のあった地震が発生した領域は、三陸沖北部、三陸沖南 部海溝寄り、福島県沖及び房総沖である。茨城県沖については、20年程度の間隔で地 震活動の活発な時期が見られるが、死者をもたらした地震は知られていない。

三陸沖北部

三陸沖北部の最大規模の地震より一回り小さい地震には、死者3名を伴った1994年の三陸はるか沖のM7.6の地震などが含まれる。これらの地震については、1945年のM7.1の地震により死傷者が出ていることから、M7.1以上の地震を対象とすると、1923年~2001年の約79年間に7回発生しており、約11.3年に1回発生していたと考えられる。これらの地震の発生領域、震源域の形態、発生間隔等は**表3-4**にまとめた。

三陸沖中部

三陸沖中部は過去に死傷者をもたらした地震は知られていない。

三陸沖南部海溝寄り

1793年に宮城県沖と連動する形でM8.2の地震があり、死傷者を伴った。1897年8月には海溝寄り単独でM7.7の地震が発生しているが、死傷者は無かった。このような地震活動については、105年程度の間隔でここを震源域とする地震が繰り返した可能性があると考え、固有地震として扱うこととした。三陸沖南部海溝寄りにおける地震の発生領域、震源域の形態、発生間隔等は**表3-5**にまとめた。

福島県沖

1938年に逆断層型及び正断層型を取り混ぜ、M7.4程度の地震が幾つか発生し、死者 1名、負傷者数名の被害を伴ったことが知られているが、このような地震活動につい ては、過去400年間他に事例が知られていない。このことから、400年以上の間隔でこ のような地震が繰り返した可能性があると考えた。福島県沖における地震の発生領域、 震源域の形態、発生間隔等は**表3-6**にまとめた。

茨城県沖

これまで死者をもたらした地震は知られていないが、地震観測データにより現在と ほぼ同様の手法で震源決定されている1923年以降現在までに、M7程度の地震が繰り 返し発生したことが知られている。そのうち、震源位置などから1920年代、1943年、 1960年代、1982年、2008年の地震活動を茨城県沖における一連の地震として扱うこと とした(図2-2)。1920年代の活動では1923年6月2日5時15分の地震を、1960 年代の活動では1965年の地震を主な地震と見なすと、平均発生(活動)間隔は21.2 年であり、過去の地震の規模は、M6.7~M7.2である(表2参照)。茨城県沖のプレー ト間地震の発生領域、震源域の形態、発生間隔等は表3-7にまとめた。

房総沖

2-1(2)で述べた1677年11月の津波地震、1909年、1953年の正断層型の地震の ほかに、1987年には、千葉県東方沖で死者2名を出すM6.7の地震が発生した。この地 震は、フィリピン海プレート内部の地震と考えられている。フィリピン海プレートの 沈み込みに伴う地震については、「相模トラフ沿いの地震活動の長期評価について」 (地震調査委員会,2004)において評価した。

2-2 次の地震について

三陸沖北部~房総沖における次の地震の発生時期及び規模は、過去の事例を踏ま え**表4-1~7**のようであると考えた。地震の発生時期は、当該領域における将来の 地震発生確率を過去の地震活動履歴に基づいて予測する確率モデル(更新過程)を適 用し、次のように評価した。当該地域における地震が比較的規則的な間隔で発生して いる場合には、更新過程をあてはめる際に、現状においてよりよく地震発生過程を近 似すると考えられるBPT分布^{*1}を適用する。それ以外の地震に対しては、更新過程を 当てはめる際に、指数分布(更新過程の特殊な場合であり、ポアソン過程^{*2}と呼ばれ る)を適用するものとする。個々の領域における評価は以下のとおり。

(1) 三陸沖北部のプレート間大地震

約100年間隔の大地震については、これまでの平均活動間隔が97.0年であり、2009 年1月1日現在の経過年数が40.6年であることから更新過程(BPT分布を適用)によ れば、ばらつきαを0.11~0.24として今後30年以内の発生確率は0.2~10%、今後50 年以内の発生確率は30~40%と推定される。今後10年以内から今後50年以内の長期発 生確率等は、**表4-1**のとおりである。

また、次の地震の規模は、過去に発生した地震の規模からM8.0前後と推定される。 なお、三陸沖北部の一回り規模の小さい地震については(4)で評価するが、複数 の死傷者が出ている地震が含まれており、約12年に1回の割合で発生していることに 留意する必要がある。

^{*1} BPT分布は、物理モデルを考慮した、地震発生間隔を表す統計モデルの一つ。

^{*2} ポアソン過程を用いた場合、地震発生の確率はいつの時点でも同じ値となり、本来時間とともに変化する確率の「平均的なもの」に なっていることに注意する必要がある。

(2) 三陸沖北部から房総沖の海溝寄りのプレート間大地震(津波地震)

M8クラスのプレート間の大地震は、過去400年間に3回発生していることから、この領域全体では約133年に1回の割合でこのような大地震が発生すると推定される。 ポアソン過程により(発生確率等は**表4-2**に示す)、今後30年以内の発生確率は20%程度、今後50年以内の発生確率は30%程度と推定される。

また、特定の海域では、断層長(200km程度)と領域全体の長さ(800km程度)の比 を考慮して530年に1回の割合でこのような大地震が発生すると推定される。ポアソ ン過程により(発生確率等は**表4-2**に示す)、今後30年以内の発生確率は6%程度、 今後50年以内の発生確率は9%程度と推定される。

次の地震も津波地震であることを想定し、その規模は、過去に発生した地震のMt等 を参考にして、Mt8.2前後と推定される。

(3) 三陸沖北部から房総沖の海溝寄りのプレート内大地震(正断層型)

プレート内の正断層型の地震については、過去400年間に1933年の昭和三陸地震の 1例しかないことと三陸沖海溝外縁の断層地形及び正断層型地震の総モーメントの 推定から、三陸沖北部~房総沖の海溝寄りの全体について400~750年の間隔で発生し ていると考えられる。ポアソン過程を適用することにより(発生確率等は**表4-3**に 示す)、今後30年以内の発生確率は4~7%、今後50年以内の発生確率は6~10%と 推定される。

また、特定の海域では、断層長(200km程度)と領域全体の長さ(800km程度)の比 を考慮して、1600~3000年の間隔で発生していると考えられ、ポアソン過程により(発 生確率等は**表4-3**に示す)、今後30年以内の発生確率は1~2%、今後50年以内の 発生確率は2~3%と推定される。

次の地震の規模は、過去に発生した地震のMおよびMtを参考にして、M8.2前後と推定 される。

(4) 上記(1)~(3) 以外の地震

三陸沖北部〜房総沖における個別の領域の、上記の(1)〜(3)以外の地震については、過去に複数の死傷者の出る被害のあった、三陸沖北部、三陸沖南部海溝寄り、 福島県沖について評価を行った。また、20年程度の間隔で地震活動の活発な時期が確認されている茨城県沖についても評価を行った(**表4-4~7**)。

三陸沖北部

三陸沖北部において、(1)で取り上げた地震以外の一回り規模の小さい地震については、複数の死傷者が報告されている地震を含むM7.1以上の地震は、約11.3年に1回の割合で発生している。このことから、ポアソン過程により今後30年以内の発生確率は90%程度と推定される(表4-4)。

次の地震の規模は、過去に発生した地震の規模からM7.1~M7.6と推定される。

三陸沖中部

この領域については、現在知られている資料からは、規模の大きな地震は知られて いないため、将来の大地震の発生の可能性もかなり低いと考えられる。しかし、発生 確率を評価するだけの資料がないため、確率の評価は行わなかった。

三陸沖南部海溝寄り

1793年及び1897年8月にここを震源とした地震があったと考えられ、発生間隔は1

05年程度(104.5年)であったと考えられる。2009年1月1日現在の経過年数が111.4 年であることから、更新過程(BPT分布を適用)によれば、ばらつきαを0.19~0.24 として、今後30年以内の発生確率は80~90%、今後50年以内で90~98%と推定される (表4-5)。

また、この領域の地震はすでに「宮城県沖地震の長期評価」(地震調査委員会,200 0)で評価されているように、宮城県沖の地震と連動する可能性がある。

次の地震の規模は、過去に発生した地震の規模を参考にすると、ここを震源域とする地震が単独で発生した場合はM7.7前後、宮城県沖の地震と連動した場合はM8.0前後と推定される。

福島県沖

1938年の福島県東方沖地震のようにほぼ同時期に複数のM7.4程度の地震が発生したものが過去400年に1回だけであったため、この領域ではこのような地震の発生間隔は400年以上と考えられる。このことから、長期的な発生確率は、ポアソン過程により今後30年以内で7%程度以下、今後50年以内で10%程度以下と推定される(表4-6)。

次の地震の規模は、過去の事例からM7.4前後と推定され、複数の地震が続発することが想定される。

茨城県沖

茨城県沖の一連の地震は、約20年程度(21.2年)の間隔で発生している。更新過程 (BPT分布を適用)によれば、ばらつきαを0.16~0.24として、今後20年以内の地震 発生確率は50%程度と推定される(**表**4-7)。

次の地震の規模は、過去に発生した地震の規模からM6.7~M7.2と推定される。

なお、茨城県沖の評価対象領域では、一連の地震と見なしたもの以外にも1938年に M7.0の地震が発生した。このことから、茨城県沖の評価対象領域内では、想定震源域 以外でもM7クラスの地震が発生する可能性があることに留意する必要がある。

房総沖

房総沖については、1909年及び1953年の地震による大きな被害がなかった(死者は いなかった)ことから、将来の同様な地震の発生確率等の評価は行わなかった。また、 1987年の千葉県東方沖の地震のようなフィリピン海プレートの沈みこみに伴う地震 については、「相模トラフ沿いの地震活動の長期評価について」(地震調査委員会,2 004)において評価したため、ここでは評価しない。

3 今後に向けて

- 三陸沖北部、三陸沖南部海溝寄りの領域及び茨城県沖の地震以外は、過去の地震 資料が少ないなどの理由でポアソン過程として扱ったが、今後新しい知見が得られれ ばBPT分布を適用した更新過程の取り扱いの検討が望まれる。
- 三陸沖~房総沖にかけての海域ではプレート内逆断層型の大地震についてはこれ まで知られていない。しかし、同様に過去このタイプの地震が知られていなかった北 海道東方沖で1994年にM8.2の地震が発生したこともあり、このような地震についても 留意する必要がある。

発生年月日	地震名 (通称)	三陸沖 北部	三陸沖北 部から房 総沖の海 溝寄り	三陸沖 南 部 海 溝寄り	福島県 沖	茨城県 沖	М	備考
1677年4月13日 1763年1月29日 1856年8月23日 1968年5月16日	1968年十勝沖 地震	0					7.9 7.4 7.5 7.9	三陸沖北部の地震 については、固有地 震と同定したものを 示した。
1611年12月2日 1677年11月4日 1896年6月15日	明治三陸地震		0				8.1 8.0 8.2	二陸冲北部から房 総沖の海溝寄りの地 震については、M8ク ラスの地震について 示した
1933年3月3日 <u>1793年2月17日</u> 1897年8月5日	三陸地震		0	0			8.1 <u>8.2</u> 7.7	
1938年11月5~6日	福島県東方沖 地震				0		7.3∼ 7.5	福島県沖について は、M7クラスの地震 が多発した時期を示
1896年1月9日 1923年6月2日(2:24) 1923年6月2日(5:15) 1924年8月15日 1935年7月19日 1938年5月23日 1943年4月11日 1961年1月16日 1965年9月18日 1982年7月23日 2008年5月8日							$\begin{array}{c} 7.3\\ 7.1\\ 7.2\\ 6.9\\ 6.7\\ 6.8\\ 6.7\\ 7.0\\ 7.0\\ 7.0\\ \end{array}$	した。 茨城県沖について は、比較的規模の大 きな地震を示した。

表1 三陸沖~房総沖の主な地震の発生領域の目安 (凡例:○=当該年月日に発生した地震の発生領域の目安。)

表2 三陸沖~房総沖で発生した主な地震のマグニチュード等

地震発生領域	地震発生年月日	地震の平均的発生頻度等 ^{注1}	地	震規	模	死傷者	数 ^{注5}
			M 注2	Mt ≟³	Mw ^{注4}	死者	負 傷 者
三陸沖北部のプレート間大地	1677/4/13	平均発生間隔は約97.0年	7.9	7.7	0) ^{注7}	_	_
晨(固有地晨としく扱っに地 震)	1763/1/29		7.4 (7.9	$(7.9)^{\pm 7}$		数人	_
	1856/8/23		7.5	(7.6)	注7	37	多数
	1968/5/16		7.9	8.2	8.3	52	330
三陸沖北部から房総沖の海溝 寄りのプレート間大地震(津 波地震)	1611/12/2 1677/11/4	江戸時代1603年以降約400年間に おいて発生は3回。	8.1 8.0 _{注6}	8.4 8.0		5000 540	— 多数
	1896/6/15		8.2	8.2		22000	4500
三陸沖北部から房総沖の海溝 寄りのプレート内大地震(正 断層型地震)	1933/3/3	江戸時代1603年以降約400年間に おいて発生は1回。	8.1	8.3		3064	1092

					V		
三陸沖北部の固有地震として 扱ったもの以外のプレート間 地震	1931/3/9 1935/10/18 1943/6/13 1945/2/10 1960/3/21 1989/11/2 1994/12/28	1923年からの約79年間に固有地 震である1968年十勝沖地震を除 いて発生は7回。	7.2 7.1 7.1 7.1 7.2 7.1 7.6	7.2 6.9 7.3 7.1 7.5		0 2 0 0 3	0 0 693
三陸沖南部海溝寄りのプレー ト間地震(固有地震として扱 った地震)	1793/2/17 1897/8/5	発生間隔は105年程度。 (1793年の地震は宮城県沖と連動。 1897年については海溝寄りのみ単独 で発生)	8.2 7.7	7.6 7.8		39 0	0
福島県沖のプレート間地震	1938/11/5 1938/11/5 1938/11/6	江戸時代1603年以降約400年間に おいて続発活動は1回。	7.5 7.3 7.4	7.6 7.6 7.3		1 0 0	9 0 0
茨城県沖のプレート間地震 (一連の地震のうち、地震発 生間隔等の算出に用いた地 震)	1923/6/2 (5:15) 1943/4/11 1965/9/18 1982/7/23 2008/5/8	平均発生間隔は約21.2年	7.1 6.7 6.7 7.0 7.0	7.0 6.9			
房総沖の地震	1909/3/13 1953/11/26	(1909年と1953年の地震は海溝寄り のプレート内地震(正断層型))	7.5 7.4	7.8		0 0	3 0

注1:発生間隔については、当該領域に発生する固有地震と判断した地震系列についてのみ示した。

注2:Mの欄は字津(1982, 1985, 1999)の表に記述されたMを採用することとした。1884年以前のMの値は近代観測が行われる前の時点のも のであり、1885年以降のものに比べ信頼性が劣る。字津(1999)は、「1884年以前の震央の緯度・経度とマグニチュードは宇佐美(19 96)の書物によるが、同書に範囲として示されているものは範囲の中央値を記入し、また分数は小数に直し小数点以下1桁で打ち 切った。」としている。また、宇津(1999)は、「1885~1980年の震源とマグニチュードは宇津の表(1982, 1985)による。」とし ている。

また、宇津(1982,1985,1999)がMを決めるうえで気象庁Mを引用した地震に関しては、気象庁による改訂M値(平成13年4月23日、 平成15年9月25日)を採用した。

ただし、1923年6月2日の地震のMは、気象庁地震予知情報課(2007)による。

注3:Mtは津波マグニチュード(阿部,1988,1999による)。津波マグニチュードとは、津波の高さの空間分布を使って算出する地震の 大きさの指標である。地震の規模を表すマグニチュード(M)は、地震波(地震動)の大きさ(揺れの大きさ)の分布を使って算 出するのに対して、Mtは、津波の高さの空間分布を使って算出する地震の大きさの指標である。Mtを決める計算式の係数は、Mtが モーメントマグニチュードMwと同じになるように決められている(Abe,1981)。津波の遡上高をデータとして工夫して用いること で、潮位観測データがない歴史地震にも適用可能(阿部,1999)であり、歴史地震のMwを推定する上で信頼性が高い。

注4:Mwはモーメントマグニチュード。モーメントマグニチュードとは、震源の物理的な規模を表す地震モーメントという量から決め られるマグニチュードである。三陸沖北部の1968年のMwについては、永井他(2001)の地震モーメントから推定した。

注5:死傷者の欄は宇津(1999)によった。表中「一」は不明(記録がない)でゼロとは限らない、「数人」は死(傷)者があったが数 については情報がないことを表す。なお、同書に扱われていない地震は空欄としている。

注6:石橋(1986)は、最大震度が4程度でM6~6.5程度の地震と推定し、揺れに比べて津波の規模が大きい津波地震であるとしている。 注7:()内のMは、宇佐美(1996)にある記述。宇佐美(1996)によれば、津波の記録等から、1677年,1763年,1856年のいずれの地震も1 968年十勝沖地震に似ており、()内のMとなる可能性があることを指摘している。

	表3-1	三陸沖北部のブ	パレート間大地震の発生領域、	震源域の形態、	発生間隔等
--	------	---------	----------------	---------	-------

項目	特性	根拠	評価の 信頼度 ^{注1}
(1) 地震の発生領域の目安	図2-1の塗りつぶした領域。	震源域は、1968年の「十勝沖地震」に ついてのアスペリティモデル(永井 (地 2001) 過去の他の震源エデル。今	Δ
(2) 震源域の形態	陸側のプレートと太平洋プレー トの境界面。低角逆断層型。	他,2001)、過去の他の展旅モアル、赤 震分布等を参照して、総合的に判断した。	
(3)震源域	図2-1 (深さは、沿岸寄りで は約60km、日本海溝寄りでは約 10km。)		
(4) 地震時における 陸のプレートの震源 断層面における平均 的なずれの向き	約N115°E+/-10°(陸側のプレ ートの太平洋プレートに対する ずれの向き)	太平洋プレートの陸側のプレートに対 方向(瀬野,1993;Seno <i>et al.</i> ,1996)か	する相対運動 ら推定した。
(5)発生間隔等	平均発生間隔 約97.0年 (BPT分布モデルを仮定した 場合におけるばらつきαは0.1 1)	1677年・1763年・1856年・1968年に当 て発生した、津波被害を伴った地震に 発生間隔を算術平均で求めた。	該領域におい ついて、平均
	最新発生時期(1968年5月16日) から2009年1月1日現在までの経 過時間 40.6年		

表3-2 三陸沖北部から房総沖の海溝寄りのプレート間大地震(津波地震)の 発生領域、震源域の形態、発生間隔等

項目	特性	根拠	評価の 信頼度 ^{注1}
 (1) 地震の発生領域の目安 (2) 震源域の形態 	図1の当該領域。 陸側のプレートと太平洋プレー	震源域は、1896年の「明治三陸地震」 についてのモデル (Tanioka and Sata ke,1996;相田,1977)を参考にし、同 様の地震は三陸沖北部から房総沖の海	С
(3)震源域	トの境界面。低角逆断層型。 日本海溝に沿って長さ200km程 度の長さ幅50km程度の幅。具体 的な地域は特定できない。	溝寄りの領域内のどこでも発生する可 能性があると考えた。	
	約N115°E+/-10°(陸側のプレ ートの太平洋プレートに対する ずれの向き)	太平洋プレートの陸側のプレートに対 方向(瀬野,1993;Seno <i>et al.</i> ,1996)か	する相対運動 ら推定した。
(5)発生間隔等	三陸沖北部から房総沖の海溝寄 り全域 平均発生頻度 400年に3回程度 三陸沖北部から房総沖の海溝寄 りのうち特定の200kmの領域 平均発生頻度 530年に1回程度	三陸沖北部から房総沖の海溝寄りにか 波被害を伴ったM8クラスの地震の発生 以降には、1611年・1677年・1896年の (房総沖の1677年の地震の震源はやや 考え方もあるが、石橋(1986)および から津波地震であることは明らかなの に含める。)特定の領域(約200km)の 96年明治三陸地震の断層長(約200km)と 房総沖の海溝寄りの長さ(約800km)の 求めた。	はは (1)3 (1)3 (1)3 (1)3 (1)3 (1)3 (1)3 (1)3

表3-3 三陸沖北部から房総沖の海溝寄りのプレート内大地震(正断層型)の 発生領域、震源域の形態、発生間隔等

項目	特性	根拠	評価の 信頼度 ^{注1}
(1) 地震の発生領域の目安	図1の当該領域。	震源域は、1933年の「三陸地震」に ついてのモデル(Kanamori, 1971a, 19 72 - Ban Manaham, 1977 - (h) たままに	C
(2) 震源域の形態	太平洋プレート内部。正断層 型。	2, ben-Menanell, 1977, 他)を参考に し、同様の地震は三陸沖北部から房 総沖の海溝寄りの領域内のどこでも	C
(3)震源域	日本海溝に沿って長さ200km程度 の長さ幅100km程度の幅。具体的 な地域は特定できない。	光生りる可能性 <i>いめるとちん</i> に。	
(4)発生間隔等	 三陸沖北部から房総沖の海溝寄り全域 平均発生頻度 400~750年に1回 三陸沖北部から房総沖の海溝寄りのうち特定の200kmの領域 平均発生頻度 1600~3000年に1回 	過去400年の間において、日本海溝沿 層型の M8クラスの地震については19 震しか知られていないため、平均発生 に1回以下である。一方、世界の沈み する正断層型地震の総モーメントの推 発生頻度は750年に1回程度と推定され 特定の領域(約200km)の発生頻度は 震の断層長(約200km)と三陸沖北部~ 寄りの長さ(約800km)の比を考慮して	いでは、正 33年の三4000 に 500 500 500 500 500 500 500 500 50

表3-4 三陸沖北部の固有地震以外のプレート間地震の発生領域、 震源域の形態、発生間隔等

項目	特性	根拠	評価の 信頼度 ^{注1}
(1) 地震の発生領域の目安	図1の当該領域。	過去の当該地域の地震活動を参考に して判断した。	P
(2) 震源域の形態	陸側のプレートと太平洋プレー トの境界面。低角逆断層型。		D
(3) 震源域	図1 (深さは、西端は約60km、東 端は約20km。)		
(4) 地震時における 陸のプレートの震源 断層面における平均 的なずれの向き	約N115°E+/-10°(陸側のプレ ートの太平洋プレートに対する ずれの向き)	太平洋プレートの陸側のプレートに対 方向(瀬野,1993;Seno <i>et al.</i> ,1990 た。	する相対運動 6)から推定し
(5)発生間隔等	平均発生頻度 11.3年に1回程度	1923年からの約79年間に固有地震であ 沖地震を除いた地震は7回あるため、 に1回程度とした。	 る1968年十勝 活動は11.3年

表3-5 三陸沖南部海溝寄りのプレート間地震の発生領域、震源域の形態、 発生間隔等

項目	特性	根拠	評価の 信頼度 ^{注1}
(1) 地震の発生領域の目安	図1の当該領域。	1793年の地震及び1897年の地震によっ て生じた津波の波源域(羽鳥,1987	D
(2)震源域の形態	陸側のプレートと太平洋プレー トの境界面。低角逆断層型。	a)、並びにこれらの地震の断層モデル (相田,1977)などを参考に判断し た。ただし、宮城県沖の地震と連動し	D
(3)震源域	図1 (深さは、西端は約30km、 東端は約10km。)	に場合はさらに陸前りに払かると考え られる〔「宮城県沖地震の長期評価」 (地震調査委員会, 2000)参照〕。	
(4) 地震時における 陸のプレートの震源 断層面における平均 的なずれの向き	約N115°E+/-10°(陸側のプレ ートの太平洋プレートに対する ずれの向き)	太平洋プレートの陸側のプレートに対 方向(瀬野,1993;Seno <i>et al.</i> ,1996)か	する相対運動 ら推定した。
(5)発生間隔等	平均発生間隔 105年程度	1793年に宮城県沖と連動した地震と18 りで単独に発生した地震との発生間 た。	97年の海溝寄 鬲より判断し
	最新発生時期(1897年8月5日)か ら2009年1月1日現在までの経過 時間 111.4年		

表3-6 福島県沖のプレート間地震の発生領域、震源域の形態、発生間隔等

項目	特性	根拠	評価の 信頼度 ^{注1}
(1) 地震の発生領域の目安	図1の当該領域。	1938年の地震活動の領域が概ね次の活 動の震源域であると判断した。	C
(2) 震源域の形態	陸側のプレートと太平洋プレー トの境界面。主に低角逆断層 型。なお、複数の大地震が2日 程度の間に続発。		C
(3)震源域	図1 (深さは、西端は約60km、 東端は約20km。)		
(4) 地震時における 陸のプレートの震源 断層面における平均 的なずれの向き	約N115°E+/-10°(陸側のプレ ートの太平洋プレートに対する ずれの向き)	太平洋プレートの陸側のプレートに対 方向(瀬野,1993;Seno <i>et al.</i> ,1996)か	する相対運動 ら推定した。
(5)発生間隔等	平均発生頻度 400年に1回以下	江戸時代以降において、福島県沖につい ラスの地震が複数短期間に発生した活 みと判断した。	いては、M7ク 動は1938年の

表 3	7	茨城県沖のプ	゚レー	ト間地震の発生領域、	震源域の野	形態、	発生間隔等
-----	---	--------	-----	------------	-------	-----	-------

項目	特性	根拠	評価の 信頼度 ^{注1}
(1) 地震の発生領域の目安	図2-2 の桃色破線で囲んだ領 域内。	震源域は、1982年及び2008年の解析結 果及び過去の地震の震源位置等を参照	٨
(2)震源域の形態	陸側のプレートと太平洋プレー トの境界面(低角逆断層型)。		Α
(3)震源域	図2-2 (深さは、西端は約60k m、東端は約20km。)		
(4) 地震時における 陸のプレートの震源 断層面における平均 的なずれの向き	約N115°E+/-10°(陸側のプレ ートの太平洋プレートに対する ずれの向き)	太平洋プレートの陸側のプレートに対 方向(瀬野,1993;Seno <i>et al.</i> ,1996)か	する相対運動 ら推定した。
(5)発生間隔等	平均発生間隔 約21.2年	1923年・1943年・1965年・1982年・20 た地震について、平均発生間隔を算行 た。	08年に発生し 新平均で求め
	最新発生時期(2008年5月8日)か ら2009年1月1日現在までの経過 時間 0.7年		

注1: 評価の信頼度は、評価に用いたデータの量的・質的な充足性などから、評価の確からしさを相対的にランク付けしたもので、AからDの4段階で 表す。各ランクの一般的な意味は次のとおりである。

A: (信頼度が) 高い B: 中程度 C: やや低い D: 低い

評価の信頼度は、想定地震の発生領域、規模、発生確率のそれぞれの評価項目について与える。なお、発生領域の評価の信頼度ランクの具体的な 意味は以下のとおりである。分類の詳細な方法については(付表)を参照のこと。

発生領域の評価の信頼度

A:過去の地震から領域全体を想定震源域とほぼ特定できる。ほぼ同じ震源域で地震が繰り返し発生しており、発生領域の信頼性は高い。

- B:過去の地震から領域全体を想定震源域とほぼ特定できる。ほぼ同じ震源域での地震の繰り返しを想定でき、発生領域の信頼性は中程度である。 または、想定地震と同様な地震が領域内のどこかで発生すると考えられる。想定震源域を特定できないため、発生領域の信頼性は中程度であ る。
- C:発生領域内における地震は知られていないが、ほぼ領域全体もしくはそれに近い大きさの領域を想定震源域と推定できる(地震空白域)。 過去に地震が知られていないため、発生領域の信頼性はやや低い。または、想定地震と同様な地震が領域内のどこかで発生すると考えられる。 想定震源域を特定できず、過去の地震データが不十分であるため発生領域の信頼性はやや低い。

°1

D:発生領域内における地震は知られていないが、領域内のどこかで発生すると考えられる。ただし、地震学的知見が不十分なため発生領域の信 頼性は低い。

^{*1} いわゆる海溝型地震の内、プレート境界で発生する大地震は、その震源域が互いにほとんど重ならず、大地震が起こっていない領域を埋めるように次々と起こってゆく傾向がみられる。このように大地震の発生する可能性がある領域において、隣接する領域で大地震が発生しているにもかかわらず、まだ大地震が発生していない領域を「地震空白域」という。

表4-1 次の三陸沖北部のプレート間大地震の発生確率等

項目	将来の地震発 生確率等 ^{注1}	備考	評価の 信頼度 _{達4}
今後10年以内の発生確率 今後20年以内の発生確率 今後30年以内の発生確率 今後40年以内の発生確率 今後50年以内の発生確率	\\$\\$`0%~0.4% \\$\\$`0%~3% 0.2%~10% 5%~30% 30%~40%	BPT分布モデルに平均発生間隔97.0年及び発生間隔の ばらつきα=0.11 (データから最尤法により求めた 値)~0.24(陸域の活断層に対する値(地震調査委員 会,2001a))を適用して算出した。	А
地震後経過率	0.42	経過時間40.6年を発生間隔97.0年で除した値。	
次の地震の規模	M8.0前後 ^{注3}	過去に発生した地震の M, Mt, Mw を参考にし、総合 的に判断した。	Α

表4-2 次の三陸沖北部から房総沖の海溝寄りのプレート間大地震(津波地震)の 発生確率等

項目	将来の地震発 生確率等 ^{注2}	備考	評価の 信頼度 _{達4}
今後10年以内の発生確率 # 今後20年以内の発生確率 # 今後30年以内の発生確率 # 今後40年以内の発生確率 # 今後50年以内の発生確率 #	7%程度 (2%程度) 10%程度) 20%程度) 20%程度) 30%程度) 30%程度) 30%程度) 30%程度) (9%程度)	約400年間に顕著な津波を伴った大地震が三陸沖北部 から房総沖の海溝寄りに3回発生していると判断し、 平均発生間隔を133.3年(=400年/3回)とし、ポアソ ン過程により三陸沖北部から房総沖の海溝寄りのど こかで発生する確率を算出した。また、1896年の地 震の断層長が三陸沖北部から房総沖の海溝寄り全体 の0.25倍程度を占めることから、特定の海域では同 様の地震が530年に1回発生するものとして、ポアソ ン過程から発生確率を算出した。 #三陸沖北部から房総沖の海溝寄り全体での発生確率を示す。()は	С
		特定の海域の恒。	
次の地震の規模	Mt8.2前後 ^{注3}	過去に発生した地震の Mt 等を参考にして判断した。 津波地震であるため M は Mt より小さい。	А

表4-3 次の三陸沖北部から房総沖の海溝寄りのプレート内大地震(正断層型)の 発生確率等

項目	将来の地震発 生確率等 ^{注2}	備考	評価の 信頼度 ^{注4}
今後10年以内の発生確率 # 今後20年以内の発生確率 # 今後30年以内の発生確率 # 今後40年以内の発生確率 # 今後50年以内の発生確率 #	$ \begin{array}{c} 1\% \sim 2\% \\ (0. 3\% \sim 0. 6\%) \\ 3\% \sim 5\% \\ (0. 7\% \sim 1\%) \\ 4\% \sim 7\% \\ (1\% \sim 2\%) \\ 5\% \sim 10\% \\ (1\% \sim 3\%) \\ 6\% \sim 10\% \\ (2\% \sim 3\%) \end{array} $	M8程度のプレート内正断層型大地震については、三 陸沖北部~房総沖の海溝寄り全体では過去400年間に 1933年の三陸地震の1例しかないことと、三陸沖海溝 外縁の断層地形及び正断層地震の総モーメントの推 定から、同様の地震が400~750年に1回発生するもの として、ポアソン過程により三陸沖北部から房総沖 の海溝寄りのどこかで発生する極率を算出した。ま た、1933年の地震の断層長が三陸沖北部から房総沖 の海溝寄り全体の0.25倍程度を占めることから、特 定の海域では同様の地震が1600~3000年に1回発生す るものとして、ポアソン過程から発生確率を算出した。	С
		#二陸州北部から房総州の海溝奇り至体での発生唯半を示す。()は 特定の海域の値。	
次の地震の規模	M8.2前後 ^{注3}	過去に発生した地震の M および Mt を参考にして判断した。	В

表4-4 次の三陸沖北部の固有地震以外の地震の発生確率等

項目	将来の地震発 生確率等 ^{±2}	備考	評価の 信頼度 _{達4}
今後10年以内の発生確率 今後20年以内の発生確率 今後30年以内の発生確率	60%程度 80%程度 90%程度	1923年以降の過去約79年間に1968年十勝沖地震(固 有地震)以外の M7.1以上の地震が7回あったため、 平均発生間隔を11.3年とし、ポアソン過程から確率 を算出した。	В
次の地震の規模	M7.1 \sim M7.6	過去に発生した地震の M を参考にして判断した。	А

表4-5 次の三陸沖南部海溝寄りのプレート間地震の発生確率等

項目	将来の地震発 生確率等 ^{注1}	備考	評価の 信頼度 _{達4}
今後10年以内の発生確率 今後20年以内の発生確率 今後30年以内の発生確率 今後40年以内の発生確率 今後50年以内の発生確率	30%~40% 60%~70% 80%~90% 90%程度 90%~98%	BPT分布モデルに平均発生間隔104.5年及び発生間隔 のばらつきα=0.19(過去の海溝型地震の平均値)~ 0.24(陸域の活断層に対する値(地震調査委員会,200 1a))を適用して算出した。	В
地震後経過率	1.07	経過時間111.4年を発生間隔104.5年で除した値。	
次の地震の規模	M7.7前後 ^{注3} (M8.0前後 ^{注3})☆	過去に発生した地震の M を参考にして判断した。 ☆宮城県沖の地震と連動した場合の規模を示す。	В

表4-6 次の福島県沖のプレート間地震の発生確率等

項目	将来の地震発 生確率等 ^{注2}	備考	評価の 信頼度 _{達4}
今後10年以内の発生確率 今後20年以内の発生確率 今後30年以内の発生確率 今後40年以内の発生確率 今後50年以内の発生確率	2%程度以下 5%程度以下 7%程度以下 10%程度以下 10%程度以下	過去400年間の間に、M7クラスの地震が続発したことが1回だけあったと判断し、同様の地震が400年以上の間隔を持って発生するものとして、ポアソン過程から発生確率を算出した。	D
次の地震の規模	M7.4前後 ^{注3} 複数続発	過去に発生した地震の M を参考にして判断した。	В

表4-7 次の茨城県沖のプレート間地震の発生確率等

項目	将来の地震発 生確率等 ^{注1}	備考	評価の 信頼度 _{達4}
今後10年以内の発生確率 今後20年以内の発生確率 今後30年以内の発生確率	ほぼ0%~0.2% 50%程度 90%程度以上	BPT分布モデルに平均発生間隔21.2年及び発生間隔の ばらつき α=0.16(過去の茨城県沖地震から求めた 値) ~0.24(陸域の活断層に対する値(地震調査委員 会,2001a))を適用して算出した。	А
地震後経過率	0.03	経過時間0.7年を発生間隔21.2年で除した値。	
次の地震の規模	M6. 7 \sim M7. 2	過去に発生した地震の M を参考にして判断した。	А

注1:評価時点は全て2009年1月1日現在。

- 注2:評価時点がどの時点でもポアソン過程を用いているため確率は変化しない。
- 注3:この報告書では、M の数値の推定のばらつきについて、「程度」および「前後」を使用。「程度」は「前後」よりばらつきが 大きい場合に使用した。
- 注4:評価の信頼度は、評価に用いたデータの量的・質的な充足性などから、評価の確からしさを相対的にランク付けしたもので、A からDの4段階で表す。各ランクの一般的な意味は次のとおりである。
 - A: (信頼度が) 高い B: 中程度 C: やや低い D: 低い

評価の信頼度は、想定地震の発生領域、規模、発生確率のそれぞれの評価項目について与える。発生確率の評価の信頼度は、 地震発生の切迫度を表すのではなく、確率の値の確からしさを表すことに注意する必要がある。なお、規模及び発生確率の信頼 度ランクの具体的な意味は以下のとおりである。分類の詳細な方法については(付表)を参照のこと。

規模の評価の信頼度

A:想定地震と同様な過去の地震の規模から想定規模を推定した。過去の地震データが比較的多くあり、規模の信頼性は高い。

- B:想定地震と同様な過去の地震の規模から想定規模を推定した。過去の地震データが多くはなく、規模の信頼性は中程度であ る。
- C:規模を過去の事例からでなく地震学的知見から推定したため、想定規模の信頼性はやや低い。
- D: 規模を過去の事例からでなく地震学的知見から推定したが、地震学的知見も不十分で想定規模の信頼性は低い。

発生確率の評価の信頼度

- A:想定地震と同様な過去の地震データが比較的多く、発生確率を求めるのに十分な程度あり、発生確率の値の信頼性は高い。
- B: 想定地震と同様な過去の地震データが多くはないが、発生確率を求め得る程度にあり、発生確率の値の信頼性は中程度で ある。
- C:想定地震と同様な過去の地震データが少なく、必要に応じ地震学的知見を用いて発生確率を求めたため、発生確率の値の信 頼性はやや低い。今後の新しい知見により値が大きく変わり得る。
- D: 想定地震と同様な過去の地震データがほとんど無く、地震学的知見等から発生確率の値を推定したため、発生確率の値の信 頼性は低い。今後の新しい知見により値が大きく変わり得る。

図2-1 三陸沖北部の想定震源域の位置

図2-2 茨城県沖の一連の地震の想定震源域

1923 年 ~2008 年 8 月の地震(深さ 60km 以浅、M≧6.0) 及び 1896 年の地震(M7.3) をプロットした。 1896年の地震は、宇津の世界被害地震の表、1923年1月~7月は、気象庁地震予知情報課(2007)を使用。

1923年8月以降は気象庁震源カタログを使用。

赤のコンターは名古屋大学(2008)による 2008 年 5 月 8 日(M6.3、M7.0)の地震のすべり量分布(コンター間隔: 0.2m)

緑のコンターは室谷他(2003)による 1982 年7月 23日(M7.0)の地震のすべり量分布(コンター間隔:0.2m)

黄のコンターは Mochizuki *et al.* (2008) による 1982 年 7 月 23 日の地震のすべり量分布(コンター間隔:0.1m、最も外側のコンターは 0.4m) 桃色破線は茨城県沖の一連の地震の想定震源域

最大すべり量の半値以上すべった領域を塗りつぶした。

*11938年5月23日(M7.0)の地震は、他の地震に比べて、震源が北よりであること及びすべり量が大きいことから、茨城県沖の一連の地震には含めない。

*21935年7月19日(M6.9)の地震は、他の地震に比べて、震源が北よりであるため茨城県沖の一連の地震には含めない。

説明

1 三陸沖から房総沖にかけての地震に関するこれまでの主な調査研究

三陸沖から房総沖にかけての地震の系列の同定にかかわる調査研究としては、869年の三陸沖の地 震まで遡って確認されたものを含めて、阿部他(1990)、千釜他(1998)、羽鳥(1973、1975a, b、1976a, b、 1998)、河野他(2000)、Kono *et al.*(2000)、菅原他(2001)、箕浦(1991)、阿部(1999)、地震調査委員 会(1999、2000)、宇佐美(1996)、宇津(1982、1999)、渡辺(1998)、渡邊(2000、2001)等がある。

過去に発生した事例の震源断層モデルに係わる調査研究としては、三陸沖北部の地震については、 相田(1977)、Kanamori(1971a, b、1972)、Fukao and Furumoto(1975)、Aida(1978)、Iida and Hakuno(1984)、 Mori and Shimazaki(1983)、Kikuchi and Fukao(1985、1987)等がある。三陸沖海溝寄りの1896年及 び1933年の地震については、Kanamori(1971a、1972)、相田(1977)、Kawasaki and Suzuki(1974)、 Ben-Menahem(1977)、藤井(1977)、Abe(1978)等がある。三陸沖南部海溝寄りについては、相田(1977)、 Aida(1978)、羽鳥(1987a)等がある。福島県沖については、Abe(1977)がある。茨城県沖については、 名古屋大学(2008)、室谷他(2003)、Mochizuki *et al.*(2008)等がある。東北地方の太平洋沖合全体の アスペリティの研究としては、Yamanaka and Kikuchi(2004)、三陸沖北部のアスペリティの研究とし ては、永井他(2001)がある。

津波の波源域および、歴史地震の研究として羽鳥(1975a,b、1976a,b、1987a,b)、石橋(1986)、都司(1994)、都司・上田(1995)、渡辺(1997)などがある。

東北日本付近の太平洋プレートの沈み込みに関連したバックスリップモデルの研究としては、測地 データを用いたEl-Fiky and Kato (1999)、並びにGPSデータを用いた伊藤他 (1999)、Ito *et al.* (2000)、 西村他 (1999) 及びNishimura *et al.* (2000)がある。

また、太平洋プレートの沈み込みに関連して発生する微小地震の震源分布等の研究としては、Umino et al. (1995)、海野他(1995)、Kosuga et al. (1996)、Hino et al. (1996)、Igarashi et al. (2001)、 宮城県沖付近の日本海溝周辺の海底下構造については、Miura et al. (2005)、Tsuru et al. (2002)、 伊藤他(2002)などがある。関東東方沖合のプレート境界の位置に関する研究としては、石田(1986)、 Ishida(1992)、野口・関口(2001)、Noguchi(2002)がある。

2 三陸沖から房総沖にかけての地震の長期評価の説明

2-1 地震の発生位置及び震源域の形態に関する評価の説明

地震の発生位置及び震源域の評価作業に当っては、過去の震源断層モデルを参照し、微小地震等 に基づくプレート境界面の推定に関する調査研究成果及び当該地域の速度構造についての調査研究 成果を参照して、三陸沖北部から房総沖にかけての領域について推定した。

各領域の区域分けについては、微小地震の震央分布を参照し、過去の大地震の震央、波源域、震 源断層モデルの分布、バックスリップモデルの研究成果を考慮して、図1のように行った。このうち、 海溝沿いの領域については、この領域で過去に発生した1896年の明治三陸地震、1933年の三陸地震の 震源断層モデル(Tanioka and Satake, 1996, Kanamori, 1971a, 1972等)の幅と傾斜角から、海溝軸 から約70km程度西側のところまでとした。地震によっては、震源の位置よりも波源域や震源域の位置 を重視して区分けした場合があり、必ずしも震源が該当する領域に入っていない場合もある(図5)。

プレート境界の形状については、バックスリップの解析に用いた伊藤他(1999)、Ito *et al.* (2000)、 西村他(1999)、Nishimura *et al.* (2000)による等深線を元に、Umino *et al.* (1995)、海野他(1995)、 Kosuga *et al.* (1996)等を参照し、宮城県沖付近については、Miura *et al.* (2005)の海底下構造調査 の解析結果、茨城県沖から南側については、Ishida(1992)、Noguchi(2002)を参照し、気象庁震源の 断面図(図4-1, 2)も参考にして、図3のように作成した。

(1) 三陸沖北部のプレート間大地震

今回の評価では、1968年の十勝沖地震を、三陸沖北部におけるプレート間大地震の典型的な例と考 えた。したがって、当該領域の大地震が発生する領域は、羽鳥(1975b)の波源域及びKanamori(1971b)、 Fukao and Furumoto(1975)等を参考にし、永井他(2001)によるアスペリティの研究成果をもとに、1968 年の地震のアスペリティおよび破壊開始点が含まれるような領域(図2-1)と考えた。過去の震源モデ ルの成果から、震源断層の長さは約200km、幅は約100kmと考え、北西方向に傾き下がるほぼ長方形の 震源域と想定した。

(南端)

1968年の地震の余震分布(図8)、過去の震源断層モデル(図2-1,6,7)から、宮古の沖合付近(北緯

39.8°付近)とした。また、この際、1896年の明治三陸津波の震源断層モデルの位置(Tanioka and Satake, 1996, 図7)とは重ならない位置とした。

(東端・西端)

1968年の地震の本震の震源は、過去に得られているいくつかの震源断層モデルの東端付近に位置 している(図2-1,6,7)。1968年の本震の震源の位置を考慮し、そこを含むように東側の端を決めた。 微小地震の分布等から、プレート境界の深さ約60km付近が東経142°付近に当たり、過去の震源断 層モデルの西端が、ほぼこの位置に一致していることから、断層面の西端は、太平洋プレート上面 の深さが約60kmのところと判断した。これは、プレート境界付近の陸側のプレートの厚さが60km程 度であり、60kmより深いところでは太平洋プレート上面は、アセノスフェアと接することとなり、 プレート境界の地震は発生しないこと(例えば、瀬野,1995)と整合している。

(北端)

1968年の地震の余震分布(図8)、過去の震源断層モデルの北端の位置(図2-1,6,7)から、北緯 41.7°付近とした。

(2) 三陸沖北部から房総沖の海溝寄りのプレート間大地震(津波地震)

過去に知られている1611年の地震および1896年の地震は、津波数値計算等から得られた震源断層モ デルから、海溝軸付近に位置することが判っている(相田, 1977、Tanioka and Satake, 1996, **図7**)。 これらからおよその震源断層の長さは約200km、幅は約50kmとし、南北に伸びる海溝に沿って位置す ると考えた。しかし、過去の同様の地震の発生例は少なく、このタイプの地震が特定の三陸沖にのみ 発生する固有地震であるとは断定できない。そこで、同じ構造をもつプレート境界の海溝付近に、同 様に発生する可能性があるとし、場所は特定できないとした(**図1**)。

(3) 三陸沖北部から房総沖の海溝寄りのプレート内大地震(正断層型)

三陸沖から房総沖にかけて過去にプレート内で発生した大地震は、1933年に発生した地震が知られている。瀬野(1995)によれば、このタイプの地震は、沈み込もうとしているプレートが曲げを受ける部分で起きる浅い正断層型の地震と考えられるとしている。このような地震はアリューシャン列島の沈み込み帯付近から、千島海溝・日本海溝に続く海溝の外側で発生している例がある(瀬野,1995)。このタイプの地震についても、三陸沖北部から房総沖の海溝付近のうちで発生する場所は特定できないとした。およその震源断層の長さ、幅は、過去における最大のものを想定し、それぞれ、約200km、約100kmと考え、南北に伸びる海溝に沿って位置すると考えた。傾斜角を約45°程度(Kanamori, 1971a, 1972等)とすると、水平投影面における東西方向の幅は約70km程度となる。

(4) (1)~(3)以外の地震

三陸沖北部

三陸沖北部については、1968年の震源域の南部と1994年の三陸はるか沖地震は、最近の研究から、 同じアスペリティが破壊する固有地震としてみることができる可能性があることが示されている(永 井他,2001)。しかし、ここではそれ以前のM7クラスの地震については、必ずしも、全てについて震 源域が明確ではないことから、本報告では固有地震としては扱わないこととする。

三陸沖中部

三陸沖中部については、過去に死傷者をもたらした地震は知られていない。

三陸沖南部海溝寄り

三陸沖南部海溝寄りについては、1793年に宮城県沖と連動したものと1897年8月に海溝寄りで単独 に発生した地震をこの領域における固有地震として取り扱った。三陸沖南部海溝寄りの領域の範囲は、 これら二つの地震によって生じた津波の波源域(羽鳥, 1987a)、並びに震源断層モデル(相田, 1977)、 バックスリップの研究成果(Ito *et al.*, 2000、 Nishimura *et al.*, 2000、 El-Fiky and Kato, 1999, 図 23-1, 2)を参考にして決めた。

福島県沖

福島県沖については、1938年にM7.4程度の地震が続発した例があるが、この他には知られておらず、 固有地震とするだけのデータは無い。そこで、福島県沖の領域内のいずれの場所でも同様の地震が発 生する可能性があると考えた。

茨城県沖

茨城県沖については、地震観測データにより現在とほぼ同様の手法で震源決定されている1923年 以降では、1923年、1924年、1935年、1938年、1943年、1961年、1965年、1982年、2008年にM6.7~M7.2 のプレート間地震が発生している(図2-2)。

2008年の地震については、本震および本震の約40分前に発生した前震について地震波による解析が 行われ、前震で東側の領域、本震で西側の領域で破壊が生じたことが示された(名古屋大学,2008)。 このことから、この領域には少なくとも2つのアスペリティがあると推定される。また、西側の方が 面積・すべり量とも大きいため、この領域の主要なアスペリティであると考えられる。

1982年の地震については、室谷他(2003)やMochizuki *et al.*(2008)の解析によるすべり量の大き かった領域が、2008年の前震及び本震によるすべり量の大きかった領域と概ね対応することから、 1982年の地震では2つのアスペリティが同時に破壊されたと推定される。なお、1982年の地震の震 央位置は東側のアスペリティに含まれる。

1961年及び1965年の地震については、震央位置がそれぞれ東側、西側のアスペリティと対応し、 2つあるアスペリティがそれぞれ単独で破壊されたと推定されることから、合わせて一つの活動と 見なした。特に1965年の地震は西側の主要なアスペリティを破壊したと考えられること、及び地震 波形の類似性(Appendix 2)から、地震発生間隔等の算出には1965年の値を用いた。

以上のことから、この領域では複数のアスペリティが、同時あるいはある程度の時間間隔をもって、時空間的にまとまって繰り返し破壊されていると考えた。

それ以前の地震についても震央位置等の検討により、1943年の地震は、上記の地震とほぼ同じ位置に震央があること(Appendix 1)、震度分布等の類似性から(Appendix 3)一連の地震と見なした。1923から1924年にかけてはM6~M7程度の地震が頻発したが、他の一連の地震とほぼ同じ位置に震央があることから、まとめて一つの活動と見なした。なお、地震発生間隔等の算出には、西側の主要なアスペリティに最も震央位置が近いと計算されている1923年6月2日5時15分の地震を用いた。

なお、地震発生間隔等の算出には含めなかったが、1896年にはM7.3の地震が発生している。震央 の位置及び地震規模の精度は現在よりも劣るものの、震源域は茨城県沖であること及び地震の発生 間隔の上でも矛盾がないことから一連の地震と推定される。

また、1935年及び1938年の地震は、一連の地震に比べて、震央が北側にあること、特に1938年の 地震は1982年や2008年の地震と比較してすべり量が大きいことから、一連の地震とは別の地震とした(表5-3)。

以上のことから、茨城県沖で発生する一連の地震の想定震源域は、図2-2に示す領域と考えた。想 定震源域は、精度の良い解析結果が得られている1982年及び2008年の地震のすべり量分布や震源位 置等を参考にして判断した。

房総沖

房総沖については、1677年11月の地震は、海溝寄りのプレート間大地震(津波地震)として扱う。そ れ以外の地震については、1909年、1953年のものが知られている。これらの地震は、プレート内部で 発生した正断層型の地震である可能性が高いが、いずれも大きな被害がなかったことから、評価の対 象とはしないこととした。

以上の判断から、三陸沖中部以外の領域は、図1に示すそれぞれの領域内では、いずれの場所でも 地震が発生する可能性があると考えた。なお、三陸沖中部については、過去に大きな地震が発生した 記録がないため、ここでは、確率等の評価をしないこととした。また、いずれの領域においても発生 する地震の震源域はプレート境界付近であると考えた。

2-2 地震活動

2-2-1 過去の地震について

三陸沖~房総沖の日本海溝沿いに発生した大地震の過去の研究では、869年の三陸沖の地震まで確認された研究成果があるが、16世紀以前については、資料の不足から地震が見落とされている可能性があるため、17世紀以降について整理した。

(1) 三陸沖北部のプレート間大地震

この領域におけるプレート間大地震の系列の同定に当っては、宇佐美(1996)、渡辺(1998)、阿部(1999)、宇津(1999)、地震調査委員会(1999)等の記述を参考にした。また、地震のマグニチュード(M)の値は宇津(1999)を採用することとした。但し、近代観測が行われるようになった1885年より前の値は、1885年以降のものに比べ信頼性が劣ることから、1884年以前のMの信頼性は低いと判断し、これを補う観点から、津波マグニチュード(Mt;阿部,1999)を併記し、参照することとした(**表2**)。

三陸沖北部においては、プレート間大地震の可能性がある地震として、17世紀以降、4回の地震が知られている。これらの地震について、過去の調査研究結果を踏まえ、津波及び震度分布の状況から固有地震と同定することとした(表5-1,2)。また、これらの大地震の間に発生した、一回り規模が小さいが、被害を伴った地震を含むM7.1~M7.6の地震については(4)で扱う。

1968年5月16日の地震

1968年5月16日に地震があった。この地震では、かなりの津波が生じ、太平洋沿岸の各地を襲っ た。波の一番高かったのは、八戸の北、野田、宮古湾等で、平均潮位上5mに達したが、ちょうど干 潮時であったため津波の被害はそれほどでもなかった(宇佐美,1996)。最大6mぐらいの高さに達し たところもあった(地震調査委員会,1999)。震度5弱相当以上となったのは、北海道南西部から青 森県東部、岩手県の北部であった。被害は、北海道・青森県・岩手県が大部分で南は埼玉県にまで 及ぶ(渡辺,1998)。有感範囲は、静岡県東部まで及ぶ。全体としての死者は52名で、そのうち青森 県での死者は47名であった。被害の主な原因は崖崩れ、地すべり、家屋の倒潰などであり、地盤の 軟らかいところで被害が大きかった。本報告では、この地震を三陸沖北部におけるプレート間大地 震の固有地震の典型と考えた。図9参照。

1856年8月23日の地震

1856年8月23日に地震があった。震害は少なかったが、八戸城内で破損等の記録あり。震度5弱 相当以上となったのは、北海道南部(襟裳岬付近)、青森県東部から岩手県までであった。有感範囲 は中山道に及び、江戸では柔らかいけれど長くゆれたとされている。地震後、津波が三陸及び北海 道の南岸を襲った。津波の高さの最大は函館で3.6~3.9mなど。南部藩では溺死者26名などの被害、 八戸藩などでも死者5名などの報告あり(宇佐美,1996)。宇佐美(1996)はこの地震の津波の様子は 1968年の十勝沖地震によく似ていると述べている。震度分布と津波の波源域は1968年十勝沖地震と 酷似(渡辺,1998)している。津波の高さは、岩手県の野田で約6m、大槌で約5mとなっており、岩手 県の沿岸で高かった(羽鳥,1973)。図10参照。

1763年1月29日の地震

1763年1月29日に地震があった。陸奥八戸、前年の11月初めより地震を発し、この日大地震となる。震度5弱相当以上となったのは、青森県東部から岩手県北部にかけてであった。江戸でも有感であった。八戸でところどころ破損、小船沖に引かれ破船、平館で家潰3、死者3などの被害が報告されている。函館では揺れを強く感じ津波があった(宇佐美,1996)。津波の高さは、八戸と久慈で4~5mと考えられる(羽鳥,1975b)。図11参照。

1677年4月13日の地震

1677年4月13日に地震があった。八戸に震害があったが、青森・仙台被害なし。地震後1時間で 津波があり、大槌・宮古・鍬ヶ崎等で被害を生じている(宇佐美,1996)。八戸の史料から本震の震 度は5と見られる。江戸でも有感となった。大田名部で船多数流失など津波被害あり(渡辺,1998)。 津波の高さは、最大で岩手県赤前の約6m(羽鳥,1975b)。図12参照。

(2) 三陸沖北部から房総沖の海溝寄りのプレート間大地震(津波地震)

この領域で、M8クラスの津波地震は、17世紀以降では、三陸沖で1611年、1896年の2例、房総沖で、 1677年11月の1例が知られているのみである。

1896年6月15日の地震

1896年6月15日に地震があった。震害はなく、地震後約35分で津波が三陸沿岸に来襲した。津波 来襲直前に鳴響のあったところが多く、第2波が最大だった。波高が最も高かったのは岩手県綾里 村(38.2m)で、被害の大きかった山田町では、戸数800のうち100戸ばかりが残り死者1,000名を算し た。津波は襟裳岬で高さ約4m、室蘭・函館で溢水があり、父島で波の高さ約1m、ハワイでは全 振幅は2.5~9mで多少の被害があった。この地震は地震の規模に比べて津波が大きく、かつ海水の 干退が比較的小さかったのが特徴である(宇佐美,1996)。津波の波源域を震源断層モデルから推定 すると、日本海溝沿いに長さ200~220km、幅50~70kmとなる。検潮記録による津波の最大全振幅は 鮎川215cm、花咲94cm、銚子76cmである(渡辺,1998)。図13、15参照。 1677年11月4日に地震があった。磐城から房総にかけて津波襲来。小名浜・中作・薄磯・四倉な どで家流倒約550(あるいは487)軒、死・不明130名余(あるいは189)。水戸領内でも溺死246名余な どの被害あり。八丈島や尾張も津波に襲われたという。確かな地震記事は房総と江戸に限られる。 陸に近いM6クラスの地震という説もある(宇佐美,1996)。銚子、一宮および江戸で弱い揺れ(e: 震度2~3)があった程度。平藩の原史料には地震のことはまったく書かれていない。被害記事に 「潰家」や「倒家」とあるが、これらは津波によるものである。したがって、明らかに津波地震で ある(渡辺,1998)。津波の高さは、外房沿岸で4~8mに達したと考えられ、津波の最も激しかった地 域のようである(羽鳥,1975a)。図22参照。

1611年12月2日の地震

1611年12月2日に地震があった。三陸地方で強震。震害は軽く、津波による被害が大きかった。 伊達政宗領内で死者1,783名、南部・津軽で人馬死3,000余であった。北海道東部にも津波が押し寄 せ溺死者が多かった。津波の波源は昭和8年の三陸地震の波源とほぼ一致する(宇佐美,1996)。山 田・大槌で e(震度2~3)、無感の所もあり、地震動は非常に小さい(渡辺,1998)。津波の高さは、 岩手県田老や小谷鳥で15~20mに達している(羽鳥,1975b)。図16参照。

(3) 三陸沖北部から房総沖の海溝寄りのプレート内大地震(正断層型)

1933年3月3日の地震

1933年3月3日に地震があった。地震による被害は少なく、三陸地方で壁の亀裂、崖崩れ、石垣・ 堤防の決壊があった程度。震後約30分~1時間の間に津波が北海道・三陸の沿岸を襲い大きな被害 が出た。特に、岩手県田老町田老では人口1,798人のうち、死者は763名、負傷者は118名であった。 また、戸数362のところ、358軒が流出し全滅といってよいほどの被害を受けるなど三陸沿岸各地で 大きな被害となった。津波の波源はかなりの広がりをもち、長軸の長さ500km、短軸の長さ145kmに 及ぶ大きなものであった(宇佐美,1996)。各地の津波の高さは、岩手県沿岸では10m以上にも及び、 とくに綾里湾で28.7mにも達した。津波を起こした地震のメカニズムは、日本海溝沿いの正断層で、 太平洋プレートの折れ曲がり地点で発生した巨大地震として特異なものであった(渡辺,1998)。図 13、14参照。

房総沖の海溝三重点付近の地震

房総沖の海溝三重点付近では、太平洋プレートの走向や傾斜角が変化するため、特異な地震活動 が見られる。1953年11月26日に発生した房総沖の地震(M7.4)は、瀬野他(1986)、Seno and Takano(1989)によるとメカニズムから、断層運動は北西ないし西北西走向で鉛直に近い節面で南西 側ブロックが北東側ブロックに対して滑り落ちる正断層型の地震であったとされ、津波を伴った。 この地震による被害は、宇佐美(1996)によると、館山・富崎で墓石の転倒、伊豆諸島で道路の破損 等とされており、津波は銚子付近で最大2~3m観測されたものの津波による被害はなかった。ま た、1909年3月13日の地震(M7.5)は震度分布から見て1953年とほぼ同規模の大地震であり、震源域 の位置はやや陸寄りとみられ、やはり微弱な津波を伴っている(宇津,1999)ことから1953年と同様 なタイプの地震であった可能性が高い。この地震による被害は、宇佐美(1996)によると、横浜で煙 突の倒潰・煉瓦壁の崩壊・瓦の墜落などで、負傷3名であった。このタイプの地震は、東北日本弧 側と伊豆・小笠原弧側から沈み込む太平洋プレートの走向・傾きが異なり、伊豆・小笠原弧側が東 北日本弧側より高角に沈み込むためプレートが変形して発生すると考えられている(Seno and Takano,1989)。いずれの地震の被害も大きなものではなかったので、確率等の評価のための対象地 震としては扱わなかった。

(4) (1)~(3)以外の地震

三陸沖北部

この領域で、気象庁の地震カタログが整備されている1923年からの約79年間に発生した地震のうち、死傷者が発生している1945年の地震を含むM7.1以上の地震は(1)で固有地震とした1968年の十勝沖地震を除き、1931年(M7.2)、1935年(M7.1)、1943年(M7.1)、1945年(M7.1)、1960年(M7.2)、1989年(M7.1)、1994年(M7.6)の7回発生している。これらは、すべてについて必ずしも震源域の位置が特定できているわけではなく、同じ場所であると判断するだけの資料が無いため、ここでは固有地震としては扱わなかった。

三陸沖中部

この領域で過去に発生したM7クラス以上の被害地震は知られていない。

宮城県沖

宮城県沖については、地震調査委員会(2000)で評価済みである。

三陸沖南部海溝寄り

「宮城県沖地震の長期評価」(地震調査委員会,2000)において、この領域は、宮城県沖地震が発生する場合に連動する可能性が指摘されている領域である。この領域で知られている地震は18世紀以降、1793年と1897年8月の地震である。地震調査委員会(2000)によれば、1793年の地震は、宮城県沖の地震と連動したM8.2の地震であり、1897年8月については、海溝寄りのみが単独でM7.7の地震として発生したとされた。この2例から105年程度の間隔で繰り返し発生している可能性があると考え、これらの地震を固有地震として扱うこととした。図17,18,19参照。

福島県沖

福島県沖については、1938年11月5日にM7.5の地震が発生した。その後、大きな余震が相次いで 発生し、M6.9以上のものは、5日19時50分にM7.3、6日17時53分にM7.4、7日06時38分にM6.9、30日 11時29分にM6.9である。福島県で死者1名、負傷者9名の被害があり、浪江・福島・請戸等、県内東 部の各地で、小被害を伴った。茨城・宮城両県でも微小被害(宇佐美,1996)。大規模な群発地震で、 11月中の有感地震は300回、12月は23回に達し、11月30日までに津波を伴った地震は7回を数えた (渡辺,1998)。図20,21参照。

茨城県沖

茨城県沖については、近代観測が始まった1885年以降で見ると、M6.7以上の地震が、1896年、1923年、1924年、1935年、1938年、1943年、1961年、1965年、1982年、2008年に発生している。このうち、最も規模が大きかったのは1896年のM7.3であり、家屋の小破及び弱い津波などが報告されている(宇佐美,2003)。

房総沖

房総沖については、上に述べた1677年11月、1909年、1953年の地震のほかに、1885年以降では、 1916年にM7.0の地震が発生しているが、この地震による被害は宇佐美(1996)によると、御蔵島で道 路破壊、横浜で練習用灯台の水銀がこぼれるなど軽微であった。したがって、この地震は評価の対 象とはしないこととした。また、房総沖では、フィリピン海プレートの沈み込みに伴う地震活動が 見られる。1987年には、千葉県東方沖で死者2名を出すM6.7の地震が発生したが、この地震はフィ リピン海プレート内部の地震と考えられている。フィリピン海プレートの沈み込みに伴う地震につ いては、「相模トラフ沿いの地震活動の長期評価について」(地震調査委員会,2004)で別途評価し た。

2-2-2 地殻変動の現状

三陸沖北部から房総沖にかけては、東側から、太平洋プレートが陸側のプレートの下に沈み込ん でおり、房総沖付近については、南側から、フィリピン海プレートが陸側のプレートの下に沈み 込んでいる場所である。

これらのプレート運動に伴う、陸上における地殻変動の様子を最近の国土地理院によるGPS観測結果(図24-1,2)で示す。これによると、東北地方から房総半島付近では西向きへの移動が卓越し、1997年から5年間程度の期間は引き続き太平洋プレートの移動に伴う動きを示していることがわかる。

2-2-3 地震活動の現状

三陸沖から房総沖にかけての各領域について、1923年以降の地震活動の現状を図25-1から図25 -3に示す。

三陸沖北部における地震活動については、1968年十勝沖地震のあと1994年に三陸はるか沖地震 が発生したが、現在は、地震はほぼ一定の割合で発生しており、定常的な地震活動になっている と考えられる。

三陸沖中部については、地震発生数が少なく、他の領域に比べ地震活動が低調であることがわかる。

宮城県沖・三陸沖南部海溝寄りでは、1978年の宮城県沖地震の余震活動はすでに定常状態にな

っている。なお、宮城県沖地震の想定震源域内で2005年8月にM7.2の地震が発生したが、地震の 規模が小さいことと、余震分布や地震波から推定される破壊領域が想定震源域全体に及んでいな いことから、この地震は「宮城県沖地震の長期評価」(地震調査委員会,2000)で想定した宮城県沖 地震ではないと考えられる。

福島県沖では、1938年の活動が顕著であるが、それ以外では、1987年にM6.7、1996年にM6.8の 地震が発生した。

茨城県沖では、約20年程度の周期で地震活動が活発な時期があり、最近では2008年にM7.0の地 震が発生した。

房総沖では、最近は大きな地震は無い。

2-2-4 プレート運動との整合性

過去の研究では、日本海溝付近の平均的なカップリング率は20%から30%とされている (Paterson and Seno, 1984)。比較的研究がなされている三陸沖北部から宮城県沖の領域について は以下のことが言える。

三陸沖北部において、1968年の十勝沖地震は、プレート境界面で平均4.0m(Aida, 1978)~ 4.1m(Kanamori, 1971b)のずれがあったと推定されている。この平均的なずれ量は、平均発生間隔 を97年と考えると、年間約8cmというプレートの相対運動速度(Seno *et al.*, 1996)から期待される ずれの累積値の約50%程度である。一方、Yamanaka and Kikuchi (2004)や永井他(2001)は、アス ペリティ分布の解析から、1968年の地震(M7.9)と1994年の地震(M7.6)の共通アスペリティについ ては、カップリング率はほぼ100%であると結論付けている。三陸沖北部におけるこれらのカップ リング率の高い値は、この地域で繰り返し大地震が発生していることと矛盾しない。

三陸沖中部については、Yamanaka and Kikuchi (2004)によれば、蓄積されている地震モーメントを地震としてはほとんど解放しておらず、川崎他 (1998)によれば、1989年、1992年、1994年の三陸沖の地震の後に非地震性すべりが起こったとされている。このことから、カップリング率は低いと考えられる。このことと、三陸沖中部では大地震が発生していないことは整合する。

三陸沖南部海溝寄りにおいて、1897年のM7.7の地震による平均的なずれの量は、標準的な地震の断層パラメータの関係式(宇津,2001)から約5.6mと推定される。このずれの量は、年間8cmというプレートの相対運動速度と前回の1793年の地震から104年程度経過していることから期待されるずれの累積値(8.3m)と比較すると、有意に小さい。このことは、この地域のカップリング率が100%より小さいこと(例えば、川崎他、1998)を考慮するとプレートの相対運動と矛盾しない。

El-Fiky and Kato(1999)は、水準測量、検潮、三角測量の記録を用いて、東北地方の沈み込み帯でのバックスリップ量を求めた(図23-2)。これによると、三陸沖北部と宮城県沖で、強いカップリング状態であり、三陸沖中部付近はカップリングが弱いことを示している。これは、上記のことと整合する。

池田(1995)、池田他(2002)は、東北・北海道の太平洋岸は測地学的時間スケールでの地殻の歪 速度が、地質学的時間スケールの歪速度より一桁大きいことを示し、この歪を解消するためには日 本海溝沿いで今まで知られている規模以上の巨大地震が発生した可能性があることを指摘してい る。しかし、このような地震については、三陸沖から房総沖において過去に実際に発生していたか どうかを含め未解明の部分が多いため、本報告では評価対象としないこととした。

2-2-5 次の地震について

(1) 三陸沖北部のプレート間大地震

想定される地震の規模については、1968年の地震のマグニチュードがM7.9で過去4回の地震の最大であり、津波の規模から得られている津波マグニチュードがMt8.2であることから、マグニチュードは8.0前後になると判断した。

当該領域において、過去に津波被害を伴った1600年以降の1677年4月、1763年、1856年、1968年の 4回の地震について、平均発生間隔を算術平均で求め、97.0年とした。この4回の地震から、BPT分 布モデルをあてはめ、ばらつき α を求めると0.11となる。しかし、データが少ない場合には α は小さ く求められる傾向がある(0gata, 1999)ことから、陸域の活断層のデータから得られた α の値(地震調 査委員会, 2001a)も考慮し α の値は0.11~0.24とした。これらの値から発生確率を計算すると、今後 30年以内で、0.2~10%、50年以内で30~40%と推定される(**表4-1**)。また、ある時点までに地震が発 生しなかったという条件で、その時点から30年以内に地震が発生する確率を図26に示す。

(2) 三陸沖北部から房総沖の海溝寄りのプレート間大地震(津波地震)

プレート間のM8クラスの大地震は、三陸沖で1611年、1896年、房総沖で1677年11月に知られている。 これら3回の地震は、同じ場所で繰り返し発生しているとはいいがたいため、固有地震としては扱わ ないこととし、同様の地震が、三陸沖北部海溝寄りから房総沖海溝寄り(図1)にかけてどこでも発生す る可能性があると考えた。房総沖の1677年11月の地震については、石橋(1986)は、地震の規模をM6~ 6.5と推定しており、もう少し陸寄りに発生した地震である可能性を指摘している。しかし、阿部(1999) から、津波地震であることは確実と思われるので、1611年、1896年の地震と同じような地震であると して扱うこととする。このような大地震の発生頻度は、過去400年間に3回発生していることから、こ の領域全体では133年に1回の割合で発生すると推定される。ポアソン過程を適用すると、この領域全 体では今後30年以内の発生確率は20%程度、今後50年以内の発生確率は30%程度と推定される。

また、三陸沖北部から房総沖の海溝寄りの特定の領域での発生頻度は、断層長(約200km)と海溝寄り の領域全体の長さ(約800km)の比を133年に乗じ、530年に1回程度の発生頻度であると推定した。ポア ソン過程を適用すると、特定の領域では今後30年以内の発生確率は6%程度、今後50年以内の発生確率 は9%程度と推定される(**表4-2**)。

(3) 三陸沖北部から房総沖の海溝寄りのプレート内大地震(正断層型)

プレート内の正断層型の大地震は、過去400年に1933年の三陸地震が知られているのみである。他 に例がないことから、このタイプの地震についても固有地震としては扱わないこととする。

三陸北部から房総沖の海溝寄りの領域全体において、このような地震の事例は過去400年間にこの 1回だけであることから、発生間隔は最低でも400年以上であるとした。

また、三陸沖の海溝外縁の正断層による地震の発生頻度の推定として、Wesnousky (1982)、島崎 (1986) に従い、以下のように考えることもできる。

世界の沈み込み帯で発生する正断層型地震の総モーメントから、このタイプの地震が、どのくらいの頻度で発生しているかを推定することができる。1933年の地震モーメントは4.3×10²⁸dyne・ cm(Kanamori, 1971a)と得られている。20世紀に全世界の海溝沿いに起きたプレート内の正断層地震の 地震モーメントの総和を求め、平均モーメント放出率を2.7×10²⁷dyne・cm/年と計算した。全世界の 海溝の長さの総計が約40,000kmであるのに対して、三陸地震の断層の長さが約200kmとされる。世界中 のどの海溝においても、1933年三陸地震タイプの地震が発生する確率が等しいと単純に仮定すれば、 このタイプの地震のモーメント放出率は、200kmと40,000kmの比から(200/40000)を2.7×10²⁷ dyne・cm /年に乗じ、1.35×10²⁵dyne・cm/年となる。この放出率の比をとると、(4.3×10²⁸)/(1.35×10²⁵)で 3185年となる。これらのことから、断層長約200kmになる特定の場所についての発生間隔は、3000年程 度と見ることができる。三陸沖北部から房総沖の海溝寄りの全体の領域では、断層長約200kmと全体の 長さ約800kmの比から、750年程度と計算される。

岩渕(2002)は、三陸沖海溝外縁の断層地形から次のような推定をしている。

三陸沖海溝外縁で断層地形が認められるのは海溝軸から約100km付近までであり、プレートの移動速度を年間約10cmとすると、断層が動き始めたのはおよそ100万年前となる。一方、実際の海底地形断面の一つから断層崖の西落ちの比高の総和を求めると2850mとなるが、この比高の総和から海底の伸長による陥没の影響(東落ちの断層崖の比高の総和が陥没量に等しいと仮定)を差し引いて、正断層の地震によると考えられる断層崖の比高の総和を求めると、約2100mとなる。1933年の地震の震源断層モデルはいくつか求められているが(佐藤,1989)、それらのモデルによる鉛直変位量は1.7m~5.2mと求まっており、その中央値をとると約3.5mとなる。したがって、正断層の地震による断層崖が1933年タイプの地震のみによって形成されたと仮定すれば、その発生回数は600回程度(2100m/3.5m)となる。これらの地震が100万年の間に発生したので、特定の場所についての発生頻度は1700年程度に1回(100万年/600回)と推定される。三陸北部~房総沖の海溝寄り全体における発生頻度は、断層長約200kmと全体の長さ約800kmの比を考慮して、約430年程度に1回と推定される。

以上をまとめると、三陸沖北部〜房総沖の海溝寄り全体では、1933年の地震と同様な地震は400~750 年に1回程度の頻度で発生していると考えられる。ポアソン過程を適用すると、この領域全体では、長 期的な発生確率は今後30年以内の発生確率は4~7%、今後50年以内の発生確率は6~10%と推定される。

また、この領域のある特定の約200kmの長さを持つ領域では、1600~3000年に1回程度の頻度で発生 していると考えられる。ポアソン過程を適用すると、特定の約200kmの長さを持つ領域では、長期的な 発生確率は、今後30年以内の発生確率は1~2%、今後50年以内の発生確率は2~3%と推定される(**表 4-3**)。

(4) (1)~(3)以外の地震

(1)~(3)以外の次の地震については、以下のように評価した。

三陸沖北部

三陸沖北部については、固有地震とした1968年十勝沖地震を除いて、M7.1以上の地震が、1923年 からの約79年間に7回発生している。現在までの調査研究では、これらの地震は、震源域が同じ場 所で繰り返し発生しているかどうかははっきりしているわけではない。これらのことをもとに推定 すると、将来の地震もM7.1~M7.6の地震が、約11.3年に1回の割合で時間的にも空間的にもこの領 域内でランダムに発生すると考えた。したがって、ポアソン過程を適用して計算することにより今 後10年以内、20年以内、30年以内の発生確率はそれぞれ60%程度、80%程度、90%程度と推定され る(表4-4)。

三陸沖中部

この領域については、長期確率の評価は行わない。

三陸沖南部海溝寄り

三陸沖南部海溝寄りについては、1897年の海溝寄りで単独に発生した地震のタイプが次の地震で あると考えると、マグニチュードは7.7程度と推定される。宮城県沖の地震と連動した場合はマグ ニチュードは8.0前後と推定され、震源域はさらに陸寄りに拡がると考えられる(地震調査委員 会,2000)。過去に発生した1793年及び1897年の地震をもとに発生間隔を105年程度(104.5年)と推定 し、地震後経過時間が111.4年であることからBPT分布をあてはめ発生確率を計算した。この場合、 事例が2例だけであり、ばらつき α を決定するだけのデータが無いため、ここでは海溝型の過去の 事例の平均値0.187(0.202(南海地震)、0.182(東南海地震)、0.177(宮城県沖地震)(地震調査委員 会,2001a,b)の算術平均値)および陸域の活断層のデータから得られた0.24(地震調査委員 会,2001a)を採用し、 α を0.19~0.24とした。その結果、長期的な発生確率は今後30年以内で80~ 90%、今後50年以内で90~98%と推定される(表4-5)。また、ある時点までに地震が発生しなかっ たという条件で、その時点から30年以内に地震が発生する確率を図27に示す。

福島県沖

福島県沖については、過去400年間で1回のみ1938年の地震活動のようにほぼ同時期に複数のM7.4 程度の地震が続発した事が知られている。このことから、この領域ではこのような地震の発生間隔 は400年以上と考えられる。したがって、長期的な発生確率はポアソン過程を適用することにより、 今後10年以内、30年以内、50年以内でそれぞれ2%程度以下、7%程度以下、10%程度以下と推定 される(表4-6)。

茨城県沖

茨城県沖については、1923年、1943年、1965年、1982年、2008年の5回の地震について、平均発 生間隔を算術平均で求め、21.2年とした。この5回の地震から、BPT分布モデルをあてはめ、ばら つき α を求めると0.16となる。しかし、データが少ない場合には α は小さく求められる傾向がある (0gata, 1999)ことから、陸域の活断層のデータから得られた α の値(地震調査委員会, 2001a)も考 慮し α の値は0.16~0.24とした。これらの値を適用して評価を行うと、今後10年以内、20年以内、 30年以内の発生確率はそれぞれほぼ0%~0.2%、50%程度、90%程度以上と推定される(**表4-7**)。ま た、ある時点までに地震が発生しなかったという条件で、その時点から30年以内に地震が発生する 確率を図28に示す。

房総沖

房総沖のフィリピン海プレートの沈み込みに伴う地震については、「相模トラフ沿いの地震活動 の長期評価について」(地震調査委員会,2004)で評価した。

(付表) 評価の信頼度の分類条件について

発生領域の評価の信頼度

(想定地震の震源域を特定した場合)

ランク	分類条件
А	ほぼ領域全体を震源域とする地震が 2 回以上繰り返し起こっている。今後も同様な震源域 で繰り返し地震が発生すると考えられ、発生領域の信頼性は高い。
В	ほぼ領域全体を震源域とする地震が1回発生しており、地震学的知見から地震の繰り返し を想定できる。それ以前にも地震が発生しているが、同様な震源域での繰り返しが必ずし も明確でないか、あるいは、ほぼ同じ震源域での地震の繰り返しが知られていないため、 発生領域の信頼性は中程度である。
С	領域内における地震は知られていないが、地震学的知見から、ほぼ領域全体もしくはそれ に近い大きさの震源域をもつ地震を想定できる(地震空白域)。発生領域内における地震が 知られていないため、信頼性はやや低い。

(特定のタイプの地震が発生すると考えられる地域を1つの領域とした場合)

В	想定地震と同様な地震が領域内で4回以上発生しており、今後も領域内のどこかで発生す ると考えられる。発生場所を特定できないため、発生領域の信頼性は中程度である。
С	想定地震と同様な地震が領域内で1~3回しか発生していないが、今後も領域内のどこか で発生すると考えられる。発生場所を特定できず、地震データも少ないため、発生領域の 信頼性はやや低い。
D	領域内で発生した地震は知られていないが、地震発生のポテンシャルはあると考えられる。 地震学的知見が不十分で震源域を特定できず、発生領域の信頼性は低い。

規模の評価の信頼度

ランク	分類条件
А	想定地震と同様な地震が3回以上発生しており、過去の地震から想定規模を推定できる。 地震データの数が比較的多く、規模の信頼性は高い。
В	想定地震と同様な地震が1、2回発生しており、過去の地震から想定規模を推定できる。 地震データの数が多くないため、規模の信頼性は中程度である。
С	過去に参照できる地震がなく、領域の大きさや推定断層長などから経験的に規模を推定し たため、想定規模の信頼性はやや低い。
D	過去に参照できる地震がなく、領域の大きさや推定断層長などから経験的に規模を推定し たが、領域や推定断層長の信頼性も低く、想定規模の信頼性は低い。

発生確率の評価の信頼度

(想定地震の震源域を特定した場合)

OBPT 分布適用

ランク	分類条件
А	想定地震と同様な地震が4回以上同定され、繰り返し間隔が3回以上得られており、発生 確率の値の信頼性は高い。
В	想定地震と同様な地震が2、3回で、繰り返し間隔が1、2回得られており、発生確率の 値の信頼性は中程度である。
С	想定地震と同様な地震は高々1回しか知られておらず、地震学的知見から繰り返し間隔を 推定したため、発生確率の値の信頼性はやや低い。

〇ポアソン過程適用

D	想定地震と同様な地震は過去に知られておらず、	地震学的知見から発生確率を推定した。
D	発生確率の値の信頼性は低い。	

(特定のタイプの地震が発生すると考えられる地域を1つの領域とした場合)

〇ポアソン過程適用

А	想定地震と同様な地震が領域内で10回以上発生しており、地震回数をもとに地震の発生率 から発生確率を求めた。発生確率の値の信頼性は高い。
В	想定地震と同様な地震が領域内で5~9回発生しており、地震回数をもとに地震の発生率 から発生確率を求めた。発生確率の値の信頼性は中程度である。
С	想定地震と同様な地震は領域内で2~4回と少ないが、地震回数をもとに地震の発生率か ら発生確率を求めた。発生確率の値の信頼性はやや低い。
D	想定地震と同様な地震は1回以下で、地震回数または地震学的知見をもとに地震の発生率 から発生確率を求めた。発生確率の値の信頼性は低い。

表5-1 三陸沖北部に発生する地震の系列の同定に関する文献での評価結果等

西暦年月日 (*2)	これまでの研究成果(*1)				木報告		地震規模		すべり量	
	地震調査委員会	宇佐美(1996)	渡辺(1998)	阿部(1999)	宇津(1999)	<u>ተ</u>		M(主に宇佐美	美,1996による)	9 9 9 里
· -/	(1999)			Mt, Hm(m)	(*3)	北領域	南領域	北領域	南領域	
1677/4/13		7 1/4~1/2 (7 3/4~8)(*5)	7 3/4~8	7.7, 3.5	©(7.9)	Ø		7 1/4~1/2		
1763/1/29	7.4	7.4 (7.9)(*5)	7.6	7.9, 4.5	©(7.4)	Ø		7.4		
1763/3/11	7 1/4	7 1/4	7 1/4		(7.3)	×(余震)		7 1/4		
1763/3/15	7	7.0			(7.0)	×(余震)	T	7.0		
1856/8/23	7.5	7.5 (7.8 ~ 8.0)(*5)	7.8 ~ 8.0	7.6, 3.0	©(7.5)	0		7.5		810cm(*8)
1896/6/15	8 1/2	6.8(8.5)(*6)	6.8 (Mt=8.3)	8.2, 16.0	(8.2)		?		8.5(*2)	1250cm(*8)
1896/6/16	7.5						×(余震)		7.5(*2)	
1896/6/16	7.5						×(余震)		7.5(*2)	
1901/8/9	7.2	7.2	7.2 (Mt=7.9)		(7.2)		×(規模小)		7.2	
1901/8/10		7.4	7.4 (Mt=7.8)		O(7.4)	O(*7)		7.4		
1931/3/9	7.6	7.6	7.6 (Mt=7.2)		O(7.6)		0		7.6	74cm(*8) 65cm(*12)
1933/3/3	8.1	8.1	8.1 (Mt=8.2)	8.3, 8.0	(8.1)	×(領域外)		8.1(領域は南領域のさらに南側)		330cm(*10) 660cm(*8)
1935/10/18			7.1 (Mt=7.3)	6.9(*13)		(C	7.1		
1943/6/13		7.1	7.1 (Mt=7.5)	7.3(*13)		(С	7.1		
1945/2/10	7.1	7.1	7.0 (Mt=7.1)		(7.1)	×(規模小)	×(規模小)			37cm(*12)
1960/3/21		7.2	7.2 (Mt=7.5)	7.5(*13)	7.2	0		7.2		
1968/5/16	7.9	7.9	7.9 (Mt=8.1)	8.2, 4.5	©(7.9)	Ø		7.9		410cm(*11) 400cm(*9)
1968/5/16	7.5	7.5	7.5 (Mt <u>=7.7</u>)		△(7.5)(*4)	×(余震)		7.5		
1968/6/12	7.2	7.2	7.2 (Mt=7.4)			×(領域外・余震)		7.2(領域は南領域のさらに南側)		
1989/11/2		7.1	7.1 (Mt=7.6)		7.1	0		7.1		
1994/12/28	7.5	7.5	7.5 (Mt=7.8)		O(7.5)		0		7.5	178cm (*12)
1995/1/7	7.1	7.2			(7.2)		×(余震)		7.1 (*2)	

|※表中の「北領域」は北緯40.5~41.5度に対応。「南領域」は北緯40~40.5度に対応

(凡例)

「文献における判断」の欄における記号

◎○:青森県東方沖(三陸沖北部の)地震と同定したか、同所に発生した大地震と判断したイベント。 ◎は約100年周期の大地震、○は40年周期のM7.5クラス地震(宇津(1999)) :青森県東方沖(三陸沖北部の)地震と同定される可能性のあるイベント \wedge

空欄:判断を示していないか、資料不十分と判断したイベント。

「本報告(案)」の欄の記号

◎○:三陸沖北部のプレート間地震と同定したイベント(◎は約100年周期の大地震、○はひとまわり小さい被害地震) ? :三陸沖北部のプレート間地震と同定される可能性のあるイベント × :三陸沖北部のプレート間地震でないと判断したイベント

- 空欄:評価しなかった。
- (注)

(*1)各欄に記載されている数字はマグニチュード。渡辺(1998)のMtは津波マグニチュード。

(*2) 地震調査委員会(1999) による。

(*3) 宇津(1999)は、青森県東方沖(三陸沖北部)において100年ごとに巨大地震が発生している(◎)ことに

言及し、その他にM7.5前後の地震が起こり(○)、平均間隔が40年程度であるとしている。

- (*4)1968年十勝沖地震の最大余震(M7.5=△)は通常の余震とするには非常に大きく、
- メカニズムも本震の低角逆断層とは異なり、正断層型であった(Kanamori, 1971bより)としている。 (*5)1968年十勝沖地震と類似しているため下段の規模の地震があった可能性を指摘。
- (*6) 宇津(1982) において、6.8と8.5の双方が示されていたが、それに触れた上で本編では6.8を採用している。 (*7) 1901年の震源域は南領域の北半分と北領域の南半分であり、1896年の明治三陸地震とは震源域は重なっていない。
- (*8)相田(1977)による。 (*9)Aida(1978)による。
- (*10)Kanamori(1971a)による。

(*11)Kanamori(1971b)による。

(*12)太平洋プレートの沈み込み速度を年8 cmと仮定して、Yamanaka and Kikuchi (2004)の図に当てはめた値。

(*13) 阿部(1988) による。数字はM t。 1968年十勝沖地震については北領域と南領域にアスペリティがありそれぞれ412 c m と286 c m のすべり量となる。

表5-2 三陸沖北部の地震の系列の同定に関する調査研究の概要

1611年12月2日	[宇佐美1996]:三陸海岸および北海道東岸。三陸地方で強震。震害は軽く、津波による被害
	が大きかった。伊達政宗領内で死1,783人。南部・津軽で人馬死3,000余という。宮城県岩
	沼、刈田郡にも津波が押し寄せ、岩沼辺では家屋残らず流出した。宮古でも一軒残らず波に
	とられる。津波の波源は昭和8年の三陸地震の波源とほぼ一致する。M≒8.1。144.4°E 39.
	0° N.
	。 1、。 「渡辺1998]・三陸けろか油 慶長三陸津波 津波の高(m)の推定値け 田老21 京古7~8
	$山田7_{2,0}$ 小公息15~20 十地5~6 叭柑19 仙 $22_{2,4}$ M $-7_{2,0}$ 144.5° Σ 20° N
	山田 Γ° 6、小谷局15°20、八炮5°0、加越12、仙日5°4。M $-\Gamma^{\circ}$ 6。144.5 E 39 N。 [原式如1000] 南日二時地震 河白(10751)の次約またした。決地が支くご なき曲点な出て
	[阿部1999]:慶長二陸地震。羽烏(1975b)の資料をもとに、津波が高くアーダも豊富な右手
	県田老から大槌までの約40kmの範囲で、Hmax(田老)=20m、Hm=7.9m、Mt=8.4か求めら
	れる。
	[地震調査委員会1999]:三陸海岸および北海道東岸。津波があり、伊達領で溺死者1,783、南
	部、津軽で人馬の死3,000以上。M=8.1。
	[宇津1999]:三陸沿岸・北海道東岸(津波地震)。M=8.1。144.0°E 39.0°N。
1677年4月13日	[宇佐美1996]:陸中。八戸に震害あり。青森・仙台被害なし。大槌・宮古・鍬ヶ崎等で津波
	被害。M=7 1/4~1/2 (1968年十勝沖地震と似ているためM=7 3/4~8.0であった可能性も
	あり)。142 1/4° E 41.0° N (1968年十勝沖地震と似ているため、144.0° E 40.0° Nの可
	能性もあり)。
	[渡辺1998]:三陸はるか沖。八戸の史料からこの地震の震度は5。田名部で船舶多数流失の記
	録など津波被害あり。M=7 3/4~8.0。144.0° E 40.0° N。
	「阿部1999]:延宝十勝沖批震。1968年十勝沖批震の3回前のプレート間地震とされる(羽島
	1975) Hmax (赤前) =6m Hm=3 5m Mt=7 7
	「字津1999]・陸中・陸南 M=7 9 142 3° F 40 5° N 100年 ジンに繰り返す大地電の一
	[] [=1555]: 座中 座突。 MI=1.5。142.5 上 40.5 N。100中でとに除り返り八地展り
1677年11日4日	ン。 「字佐羊1006」・般城・党陆・安臣・上総・下総 般城から 尾絵にかけて津波龍本 小名近・
1011 +11)1 + 1	山佐・藩磯・四倉・江夕・典問などで宮海例約550 死・不明190分 水戸領内 冨公 園州
	十十· 傳城 · 四月 · 江石 · 豆间など(豕伽固約3500、元 · 小町100末。小广頃内、房松、矢川 巴辺短づき決定の地宝記程をり、陸ににいMCならえの地震しいる話されて、M-2.0 142.0
	石沼頂でも洋波の彼吉記録めり。座に近いM6クラスの地展という説もある。M≒8.0。142.0
	[渡辺1998]:房総半島東方沖。延宝房総津波。地震の農度は銚子、一宮、勝浦および江戸で
	弱い地震(震度2~3)があった程度。磐城から房総・伊豆半島東岸・伊豆諸島にかけて津波
	来襲。M≒8.0。142.0° E 35.5° N。
	[阿部1999]:延宝房総沖地震。震源の位置ははっきりしないが、津波高の分布から波源は房
	総沖とみられる (羽鳥,1975a)。Hmax (新宮) =6.5m、Hm=4.9m、Mt=8.0。
	[地震調査委員会1999]:磐城・常陸・安房・上総・下総。磐城から房総にかけて津波。水戸
	領内で溺死者36、家屋全壊189。M=8。
	[宇津1999]:磐城・常陸・房総・八丈島 (津波地震)。M=8.0。141.5° E 35.0° N。
1763年1月29日	[宇佐美1996]:陸奥八戸。11月はじめより地震を発し、この日大地震。八戸でところどころ
	破損。小船波で沖に引かれ破船。函館は強く感じ津波あり。M=7.4(1968年十勝沖地震と似
	ているためM7.9程度であった可能性もあり)。142 1/4° E 41.0° N (1968年十勝沖地震と
	似ているため、143.5°E 40 3/4°Nの可能性もあり)。
	「渡辺1998]・青森県東方沖、1ヵ月以上前から地震あり、八戸で人家・十蔵の潰壊多い、津
	「阿部1900]・ 完 歴 十 勝油 地 雪 1968 年 十 勝油 地 雪 の 9 回前の プレート 閉 地 雪 と される (羽阜
	[四即1555]. 玉眉一꺼竹地展。1500年一份竹地展の2回前のグレード間地展とされる(初点, 1075) 合計(1049)の決速損措限知は1 レルキノ 1677年上勝油地震に比べてデータけけるか
	1975)。 -7 $+1075$)の律仮規模階級は12小さく、1077年 勝伊地震に比べて) = -7 はなる M
	に少ない (羽烏,1975)。Hmax (八戸) =5m、Hm=4.5m、Mt=7.9。
	[地震調査委員会1999]: 陸奥八戸。津波あり、家屋破損多数、河川の盗水により田畑の多数
	埋没。M=7.4。
	[宇津1999]:陸奥(八戸)。M=7.4。142.3°E 41.0°N。100年ごとに繰り返す大地震の一
	$\mathcal{I}_{\mathbf{r}}$
1763年3月11日	[宇佐美1996]:陸奥八戸。1月29日の地震以来震動とまらず。この日に強震。流失船あり。M
	$= 7 \ 1/4_{\circ} \ 142.0^{\circ} \ E \ 41.0^{\circ} \ N_{\circ}$
	[渡辺1998]:1月29日の地震の最大余震。八戸城内の土手などが崩れ、八戸・久慈で船の流失

	破損があった。 $M=7 1/4$ 。142.0° E 41.0° N。			
	[地震調査委員会1999]:陸奥八戸。建物倒壊。M=7 1/4。			
	[宇津1999]:八戸。M=7.3。142.0° E 41.0° N。			
1763年3月15日	[宇佐美1996]:陸奥八戸。湊村は津波に襲われ、家屋人馬の流失多し。M≒7.0。142.0°E			
	41. 0° N _o			
	[地震調査委員会1999]:陸奥八戸。八戸地方で津波等により被害。人馬流失多数。M=7。			
	[宇津1999]:八戸。M=7.0。142.0° E 41.0° N。			
1856年8月23日	[宇佐美1996]:日高・胆振・渡島・津軽・南部。震害は少なかったが、八戸城内でところど			
	ころ破損等の記録あり。震後津波が三陸および北海道の南岸を襲った。波の高さの最大は函			
	館で3.6~3.9mなど。M≒7.5(津波の様子が1968年十勝沖地震と似ているためM7.8~8.0と			
	なる可能性もあり)。142 1/4° E 41.0° N (津波の様子が1968年十勝沖地震と似ているため			
	143.5° E 40.5° Nとなる可能性もあり)。			
	[渡辺1998]:三陸はるか沖。この地震前19日頃から数回の地震があった。震度分布と津波の			
	波源域は1968年十勝沖地震津波と類似。震害・津波の記載内容は宇佐美(1996)とほぼ同じ。			
	$M=7.8\sim 8.0_{\circ}$ 143.0° E 40.5° N_{\circ}			
	[阿部1999]:安政十勝沖地震。地震被害と津波の資料から見て,1968年十勝沖地震の1回前の			
	プレート間地震とされる(羽鳥,1973)。Hmax(大槌)=6m、Hm=3.0m、Mt=7.6。			
	[地震調査委員会1999]:日高・胆振・渡島・津軽・南部。津波により湊村に被害。家屋浸水			
	多数。八戸藩で死者5、家屋全壊189、同流失33。M=7.5。			
	[宇津1999]:三陸地方・松前。M=7.5。142.3°E 41.0°N。100年ごとに繰り返す大地震			
	$\mathcal{O} - \mathcal{O}_{\circ}$			
1896年6月15日	[宇佐美1996]:三陸沖。明治三陸地震津波。震害はなく、地震後約35分で津波が三陸沿岸に			
	来襲。M=6.8 (又は8 1/2。いずれも宇津,1982から引用)。144° E 39 1/2° N。			
	[渡辺1998]:明治三陸津波。震度は小さく、地震による被害はなかったが、津波は非常に大			
	きく、いわゆる津波地震あるいは低周波地震である。M=6.8。Ms=7.2。Mto=(8.3)。144			
	$^{\circ}$ E 39.5 $^{\circ}$ N $_{\circ}$			
	[阿部1999]:Hmax (三陸町綾里) =38.2m、Hm=16.0m、Mt=8.2。			
	[地震調査委員会1999]:明治三陸地震。逆断層型のプレート間地震。死者26360名。津波の高			
	さは岩手県三陸町綾里で38.2m(明治以降に日本付近で記録された津波の高さの最大)。地震			
	動はあまり大きくなく最大でも震度4程度であったとされているが、津波の高さは非常に高			
	く、通常の地震より断層がゆっくりとずれる津波地震であったと考えられている。M=8 1/			
	2°			
	[宇津1999]: 岩手県沖[三陸沖]津波地震。M=8.2。144.0°E 39.5°N。			
1896年6月16日	[宇佐美1996]:余震29回(青森)。但し規模についての記載はなし。			
	[地震調査委員会1999]: M7.5の最大余震(2回)が発生。			
1901年8月9日	[宇佐美1996]:青森県東方沖。青森県三戸郡で被害が最大。宮古近海で9日夜高さ60cmくらい			
	の小津波が襲来。その他、鮎川では9日に全振幅46cm、10日には全振幅50cmの津波があった等			
	の記録あり(被害は9日と10日の地震を一括して記述)。M=7.2。142.5°E 40.5°N。			
	[渡辺1998]:青森県東方沖。青森県三戸郡で被害が最も大きい。津波は9日夜に宮古で高さ約			
	0.6mがあったが、10日にはなかった。10日は鮎川の検潮記録に50cmの津波最大全振幅の記録			
	$b_{\circ} \theta_{\circ} M = 7.2_{\circ} Mt_{\circ} = (7.9)_{\circ} 142.5^{\circ} E 40.5^{\circ} N_{\circ}$			
	[宇津1999]:青森県東方沖。M7.2。142.5° E 40.5° N。			
1901年8月10日	[宇佐美1996]:被害は9日の地震と一括して記述。M=7.4。142.3°E 40.6°N。			
	[渡辺1998]:青森県東方沖。被害は9日の地震と一括して記述。M=7.4。Mto=(7.8)。14			
	2.3° E 40.6° N_{\circ}			
	[地震調査委員会1999]: 八戸地方。八戸から青森にかけて津波を含めて被害。死傷者18、住			
	家全壊8。M=7.2(7.4)。			
	[宇津1999]:青森県東方沖。M7.4。142.3°E 40.6°N。100年間隔の大地震の間に40年間			
	隔程度で発生するM7.5程度の地震の一つ。			
1931年3月9日	[宇佐美1996]:青森県南東方沖。八戸市で壁の剥落等。函館や青森でも被害あり。八戸で津			
	波の全振幅39cm。M=7.6。142.5° E 41.2° N。			
	[渡辺1998]:青森県東方沖。八戸市で壁の剥落等。函館や青森でも被害あり。八戸で津波の			
	全振幅39cm。M=7.6。Mto=7.2。142.5° E 41.2° N。			

	[宇津1999]:青森県東方沖。M=7.6。142.50°E 41.20°N。100年間隔の大地震の間に40 年間隔程度で発生するM7.5程度の地震の一つ。
1933年3月3日	「宇佐美1996]:三陸地震津波。地震による被害は少なく、三陸地方で壁の亀裂、崖崩れ、石
	「「山」」 「」」」 「」」」 「」」」 「」」」 「」」」 「」」」 「」」
	大きな被害が出た。M=8.1。144.52°E 39.23°N。
	「渡辺1998]・昭和三陸津波。地震による被害は少なく、三陸地方で壁の亀裂、崖崩れ、石垣
	・坦防の決壊があった程度 電俗約30分~1時間の間に津波が北海道・三陸の沿岸を襲い 大
	・ 死的の人物の シル住反。 尿液がの エットロットロートレム 「日本三 一王 ン 日月 こ ス・、 、 、 キャ ※ 宝をもた こ ト M=8 1 Mtn=8 2 144° 31′ F 39° 14′ N
	さな火音をひたりした。 $WI=0.1_0$ $WI=0.2_0$ HH OI L OF H N_0 [R可如1000]・ $H_{mov}=29$ 7m $H_m=8$ 0m $Mt=8$ 3
	[門司)1999]:「IIIIIAX-20.1II、IIII-0.0II、IVIL-0.00
	[地展調査会員云1999]:二座地展。八年((により))()古。八十(イノレー)()1)、元上しにエッロー エロッロを エネ900(4々 決決の古さの具十)は二陸町途田で99 0m 十亚洋沙岸地域を山心に雪
	空切地震。死有3004石。伊仮ワ同さの取八は二座町板土、40.0m。水下市10戸地域で「ローズ ニーチ知知」 陸の毎週 岸島がおどの地宝な井ドを M-01
	度5を観測し、笙切亀宏、厓朋40なCの奴吉を生した。141-0.1。
	[于律1999]: 右于県仲[二陛仲圯扆]。 M-0.1。144.02 E 03.20 IN。
1935年10月10日	[渡辺1998]:二座はるフシ神。 (例 記録による年のい取入主派 (聞は八戸 く200回。 1v1-1.1。 1v100
	$= (7.3)_{\circ} 144 21^{\circ} E 40 45^{\circ} N_{\circ}$
· ^ / ^ / * ^ I 10 II	[
1943年6月13日	[宇佐美1996]:八尸東万冲。八尸で最天至振幅60cmの伴波かめった。MI-1.1。143.30 ビュ 1 25°N
	[渡辺1998]:十勝沖。検潮記録による津波の最大全振幅は八戸で60cm、宮古で13cmであっ
	$\hbar_{\circ} M = 7.1_{\circ} Mt_{\circ} = (7.5)_{\circ} 143^{\circ} 21' E 41^{\circ} 15' N_{\circ}$
	[阿部1988]:青森県東方沖。Mt=7.3。Mj=7.1。
1945年2月10日	[宇佐美1996]:八戸北東沖。八戸、小中野・三田町方面で微小被害。八戸で津波全振幅35c
	$m_{\circ} M = 7.1_{\circ} 142.07^{\circ} E 41.00^{\circ} N_{\circ}$
	[渡辺1998]:青森県東方沖。八戸で震度5を記録し、微小被害。検潮記録による津波の最大全
	振幅は八戸35cmであった。M=7.1。Mto=(7.0)。142.04° E 41.00° N。
	「地震調査委員会1999]:青森県東方沖。死者2。家屋倒壊2。M=7.1。
	[宇津1999]:青森県東方沖。M=7.1。142.07°E 41.00°N。
1960年3月21日	[宇佐美1996]:三陸沖。本震により青森・岩手・山形の各県にわずかな被害と地変を生じ
	た。津波を生じ、三陸海岸で波の高さ50~60cmで被害なし。M=7.2。143.43° E 39.83°
	「渡辺1998]:三陸はるか沖。八戸市で水道管破裂2ヶ所、八戸駅陸橋の橋脚部欠損、岩手県
	二戸群安代町で崖崩れなど。津波の高さ(cm)は、田老50、釜石市両石60など。M=7.2。M
	$t_0 = 7.5_{\circ} 143^{\circ} 26' E 39^{\circ} 50' N_{\circ}$
	「阿部1988]:岩手県沖。Mt=7.5。Mj=7.2。
	「字津1999]:岩手県沖。M=7.2。143.43°E 39.83°N。
1968年5月16日	「字佐美1996]:1968年十勝沖地震。被害は北海道・青森・岩手を主とし南は埼玉にまで及ん
10000 1 - , -	でいる。この地震によりかなりの津波が生じ、太平洋沿岸の各地を襲った。波の一番高かっ
	たのは八戸の北等で、平均潮位上約5mに達した。M=7.9。143°35′E 40°44′N。
	「渡辺1998]・1968年十勝沖地震。青森県東部と北海道南西部で震度5を観測。被害は、北海道
	・青森県・岩毛県が大部分で南は埼玉県にまで及ぶ。津波は、八戸の北等で4m以上の高さ。
	$M = 7$ 0 $M_{10} = 8$ 1 143° 35′ F 40° 44′ N.
	$[Km \pm K1000] \cdot H_{max} = 6.8m Hm = 4.5m Mt = 8.2.$
	[hh雪調本禾昌스1000]・1068年十時沖妝電 青森県東方沖の広い範囲を震源域として発生し
	レ地震 「「山東」を見ている。」・1000千 「「「山東」の「山東」、「山東」では「山東」で キプレート 問地雪 車 北地方の 北部や 北海道 南部を 中心に 広い 範囲で 強い 地震動 を 牛じ、 東
	12 10 10 10 10 10 10 10 10 10 10 10 10 10
	1地辺へは日本中、ハニ中へ成成のと風味。1+1次のコエン、国にいないいは、シーンロー・エートを担訴まなった
	「一つかって。 「一つかって。」
	[于 年1333]. 日 林 宗 朱 刀 (丁 [防 (丁 地 戻]。 [M = 1.3。 140.00 [] 10.10 [] 00
1968年5月16日(余震)	「字佐美1996]:同日のM7.9の地震の余震として、先の地震とともに一括して記述。M=7.
	$5_{-}142^{\circ}51' + 41^{\circ}25' + N_{-}$
	 [渡辺1998]:1968年十勝沖地震の最大余震。浦河と広尾で震度5。津波の最大全振幅は広尾で
	115cm等。 $M=7.5_{\circ}$ Mto=7.7。142° 51′ E 41° 25′ N。
	[地震調査委員会1999]:余震。北海道南部の浦河町、広尾町で震度5を観測。M=7.5。

	[宇津1999]:青森県東方沖。M=7.5。142.85°E 41.42°N。通常の余震とするには非常に
	大さく、メカニスムも本農の低用逆断層に対して止断層型と異なる(Kanamor1, 1971bを5) 用)。
1968年6月12日	[宇佐美1996]:5月16日の地震の余震として、先の地震とともに一括して記述。M=7.2。14
	$3.08^{\circ} E 39.25^{\circ} N_{\circ}$
	[地震調査委員会1999]:東北北部から北海道南部にかけての広い範囲で震度4を観測。M=7.
	2_{\circ}
	[渡辺1998]:1968年十勝沖地震の余震。最大震度は八戸など東北の北部を中心とした範囲で4
	を記録。検潮記録による津波の最大全振幅は島ノ越が最大(156cm)である。M=7.2。Mto=
	7. 4_{\circ} 143° 08′ E 39° 25′ N $_{\circ}$
1989年11月2日	[宇佐美1996]:三陸はるか沖。北海道・三陸海岸で高さ約50cm未満の津波が観測された。三
	沢漁港で壁面の一部落下があった。M=7.1。143°03.4′E 39°51.3′N。
	[渡辺1998]:三陸はるか沖。検潮記録による津波の最大全振幅(cm)は、久慈105、宮古92、
	浦河63、八戸60、日立港66など。M=7.1。Mto=7.6。143°03′E 39°51′N。
	[宇津1999]:岩手県沖。M=7.1。143.06° E 39.85° N。
1994年12月28日	[宇佐美1996]:平成6年(1994年)三陸はるか沖地震。八戸で死傷者が出る被害。小津波が沿
	岸各地を襲った。M=7.5。143°44.9′E 40°25.6′N。
	[渡辺1998]:平成6年(1994年)三陸はるか沖地震。八戸で震度6など、北海道から中部地方の
	広い範囲で有感。死傷者をはじめ、被害のほとんどが青森県であった。津波による災害はな
	く、地震によるものである。津波の検潮記録による最大全振幅は久慈で170cmなどであった。
	$M=7.5_{\circ}$ $Mt_{0}=7.8_{\circ}$ 143° 43′ E 40° 27′ N _o
	[地震調査委員会1999]:三陸はるか沖地震。プレート間地震。青森県八戸市付近を中心に強
	い地震動が生じ、八戸市では震度6を観測。検潮所で観測された津波の高さは岩手県の宮古市
	の55cmが最大で、津波による大きな被害はなかった。建物の倒壊などの被害が生じ死者3名。
	M=7.5 _°
	[宇津1999]:八戸東方沖[三陸はるか沖地震]。M=7.5。143.75°E 40.43°N。100年間隔
	の大地震の間に40年間隔程度で発生するM7.5程度の地震の一つ。
1995年1月7日	[宇佐美1996]:前年12月28日の地震の余震として、先の地震とともに一括して記述。M=7.
	2_{\circ} 142° 18.6′ E 40° 13.2′ N $_{\circ}$
	[地震調査委員会1999]:昨年12月28日に発生した三陸はるか沖地震の最大余震。八戸市で震
	度5を観測し、負傷者や家屋倒壊などの被害が生じた。M=7.1。
	[宇津1999]:八戸東方沖(余震)。M=7.2。142.31°E 40.22°N。

		これ						
西暦年月日	気象庁	大竹・笠原(1983)	宇佐美(2003)	宇津(1982)	宇津(1999)	阿部(1988)	本報告	
1896/1/9		7 1/2	7.3		7.3	7.3	0	
1923/6/2 (02時24分)	7.1 (*2)	7.3		7.3		7.4	0	
1923/6/2 (05時15分)	7.1 (*2)	7.1		7.1			Ø	
1924/8/15	7.2(*2)	7.1		7.1			0	
1935/7/19	6.9			6.9		6.6	×	
1938/5/23	7.0		7.0	7.0		7.5	×	5.7 m(*3)
1943/4/11	6.7	6.7					Ø	
1961/1/16	6.8			6.8		7.2	0	
1965/9/18	6.7			6.7			Ø	
1982/7/23	7.0	7.0				7.0	Ø	75cm(*4)
2008/5/8	7.0					6.9(*6)	Ø	1.7 m(*5)

表5-3 茨城県沖で発生する地震の系列の同定に関する文献等での評価結果

(凡例)

・「本報告」の欄の記号

◎:茨城県沖の評価領域において時空間的にまとまって繰り返し発生する一連の地震の代表として ■ 液域保存の評価値域で発生する一連の地震だが、地震発生間隔等の算出には用いなかったイベント

×:茨城県沖の評価領域における一連の地震とは異なる地震と判断されたイベント

(注)

(*1)各欄に記載されている数字はマグニチュード。ただし、阿部(1988)は津波マグニチュード。

(*2)気象庁地震予知情報課 (2007)による

(*3)室谷他(2004)による (*4)Mochizuki *et al*. (2008)による

(*5)名古屋大学 (2008)による (*6)阿部 (2008 私信)による

35
表5-4 茨城県沖の地震の系列の同定に関する調査研究の概要

1896年1月9日	[大竹・笠原1983]: M=7 1/2。141° E 36 1/2° N。 [宇佐美2003]: 水戸付近から久慈・那珂両川の沿岸地方で家屋・土蔵の小破あり。また猪苗 代湖でも小被害があった。弱い津波あり(周期8分)。M=7.3。141° E 36 1/2° N。 [宇津1999]:茨城県沖。死傷者は無く、壁や地面に亀裂などが生じる程度の微少被害。津波 の記録はあるが、被害無し。M=7.3。141° E 36.5° N。深さ100km未満。
1923年6月2日	 (02時24分)[宇津1982]:茨城県沖。M=7.3。142°E 35.9°N。 [気象庁2007]:M=7.1 (05時15分)[宇津1982]:茨城県沖。M=7.1。142°E 36°N。 [気象庁2007]:M=7.1
1924年8月15日	[宇津1982]:茨城県沖。M=7.1。141.6°E 36.2°N。
1935年7月19日	[宇津1982]:茨城県沖。M=6.9。141.38° E 36.63° N。
1938年5月23日	[宇佐美2003]:被害は小名浜付近の沿岸と、内陸の福島・郡山・白河・会津若松付近にあっ た。とくに郡山・須賀川・猪苗代の付近で強く、煉瓦煙突の折損、壁落、壁や道路の亀裂が あった。小名浜でも同様の小被害があり、小崖崩れもあった。小名浜に震後22分で小津波 (全振幅83cm)が押し寄せた。M=7.0。141°35′E 36°39′N。 [宇津1982]:茨城県沖。M=7.0。141.58°E 36.65°N。家屋の破損、道路の損壊などが生 じる程度の小被害。 [宇津1999]:茨城県沖。死傷者は無く、壁や地面に亀裂などが生じる程度の微少被害。津波 の記録はあるが、被害無し。M=7.0。141.58°E 36.65°N。
1943年4月11日	[大竹・笠原1983]: M=6.7。141.45° E 36.35° N。
1961年1月16日	[宇津1982]:茨城県沖。M=6.8。142.27°E 36.03°N。
1965年9月18日	[宇津1982]:茨城県沖。M=6.7。141.47°E 36.32°N。深さ40km。
1982年7月23日	[大竹・笠原1983]: M=7.0。142.20° E 36.36° N。
2008年5月8日	(気象庁一元化震源) M=7.0。141°36.4′E 36°13.6′N。深さ51km。 [消防庁2008]:軽傷6名、住家被害なし。

引用文献(アルファベット順)

- 相田勇 (1977):三陸沖の古い津波のシミュレーション,東京大学地震研究所彙報, 52, 71-101.
- Aida, I. (1978) : Reliability of a tsunami source model derived from fault parameters, J. Phys. Earth, 26, 57-73.
- Abe, Ka. (1977): Tectonic implications of the large Shioya-Oki earthquakes of 1938, Tectonophysics, 41, 269-289.
- Abe, Ka. (1981): Physical size of tsunamigenic earthquakes of the northwestern Pacific, Phys. Earth Planet. Inter., 27, 194-205.
- 阿部勝征 (1988): 津波マグニチュードによる日本付近の地震津波の定量化, Bull. Earthq. Res. Inst. Univ. Tokyo, 63, 289-303.
- 阿部勝征(1999): 遡上高を用いた津波マグニチュードMt の決定-歴史津波への応用-, 地震 2, 52, 369-377.
- Abe, Ku. (1978): A dislocation model of the 1933 Sanriku earthquake consistent with the tsunami waves, J. Phys. Earth, 26, 381-396.
- 阿部壽・菅野喜貞・千釜章(1990):仙台平野における貞観 11 年(869 年)三陸津波の痕跡高の推定, 地震 2, 43, 513-525.
- Ben-Menahem, A. (1977): Renormalization of the Magnitude scale, Phys. Earth Planet. Inter., 15, 315-340.
- 千釜章・多田省一郎・青沼正光(1998):下北半島における津波の伝承の解釈と埋没ヒバ林の成因,地 震2,51,61-73.
- 中央氣象臺(1897):顕著地震概況、8月5日の地震,「明治三十年地震報告」,77.
- El-Fiky, G.S. and T. Kato (1999) : Interplate coupling in the Tohoku district, Japan, deduced from geodetic data inversion, J. Geophys. R., 104, B9, 20361-20377.
- 藤井陽一郎(1977): 1933年三陸沖地震の地殻変動, 測地学会誌, 23, 74-81.
- Fukao, Y. and M. Furumoto (1975) : Foreshocks and multiple shocks of large earthquakes, Phys. Earth Planet. Inter., 10, 355-368.
- 羽鳥徳太郎(1973):安政3年(1856年8月23日)八戸沖津波の規模と波源域の推定,地震2,26,204-205.
- 羽鳥徳太郎(1975a): 房総沖における津波の波源-延宝(1677年)・元禄(1703年)・1953年房総沖津波の規模と波源域の推定-,東京大学地震研究所彙報,50,83-91.
- 羽鳥徳太郎(1975b):三陸沖歴史津波の規模と推定波源域,東京大学地震研究所彙報, 50, 397-414.
- 羽鳥徳太郎(1976a): 1938 年福島県沖群発地震による津波の発生機構,地震 2, 29, 179-190.
- 羽鳥徳太郎(1976b):南房総における元禄16年(1703年)津波の供養碑-元禄津波の推定波高と対象地 震津波との比較-,東京大学地震研究所彙報,51,63-81.
- 羽鳥徳太郎(1987a):寛政5年(1793年)宮城沖地震における震度・津波分布,東京大学地震研究所彙報, 62,297-309.
- 羽鳥徳太郎(1987b): 房総沖における津波の波源, 地震 2, 40, 205-211.
- 羽鳥徳太郎(1998): 貞観 11 年(869 年) 宮城多賀城津波の推定波源域,月刊海洋,号外, 15, 167-171.
- Hino R., T. Kanazawa and A. Hasegawa (1996): Interplate seismic activity near the northern Japan Trench deduced from ocean bottom and land-based seismic observations, Phys. Earth Planet. Inter., 93, 37-52.
- Igarashi, T., T. Matsuzawa, N. Umino and A. Hasegawa (2001), Spatial distribution of focal mechanisms for interplate and intraplate earthquakes associated with the subducting Pacific plate beneath the northeastern Japan arc: A triple-planed deep seismic zone, J. Geophys. Res., 106, 2177-2191.
- Iida, M. and M. Hakuno (1984) : The difference in the complexities between the 1978 Miyagiken-Oki earthquake and the 1968 Tokachi-Oki earthquake from a viewpoint of the short-period range, Nat. Disas. Sci., 6(2), 1-26.
- 池田安隆(1995):活断層研究と日本列島の現在のテクトニクス,活断層研究, 15, 93-99.
- 池田安隆・今泉俊文・東郷正美・平川一臣・宮内崇裕・佐藤比呂志編(2002): 『第四紀逆断層アトラ ス』,東京大学出版会,254pp.
- 今村明恒(1942):日本津浪史,海洋の科学,小山書店,2,74-80.
- 石橋克彦(1986):1677(延宝5)年関東東方沖の津波地震について,歴史地震,2,149-152.

- 石田瑞穂(1986):関東・東海地域の震源分布から推定したフィリピン海及び太平洋プレートの等深線, 国立防災科学技術センター研究報告,36,1-19.
- Ishida, M. (1992): Geometry and Relative Motion of the Philippine Sea Plate Beneath the Kanto-Tokai District, Japan, J. Geophys. Res., 97, B1, 489-513.
- 伊藤亜妃・日野亮太・西野実・藤本博巳・三浦誠一・小平秀一・長谷見晶子(2002):エアガン人工地震 探査による東北日本前弧域の地殻深部構造,地震2,54,507-520.
- 伊藤武男・吉岡祥一・宮崎真一(1999): GPS データのインヴァージョン解析から推定した東北日本にお けるプレート間カップリングの推定,月刊地球,号外,25,158-165.
- Ito, T., S. Yoshioka and S. Miyazaki (2000): Interplate coupling in northeast Japan deduced from inversion analysis of GPS data, Earth and Planetary Science Letters, 176, 117-130.
- 岩渕洋(2002):海洋プレート上の正断層による地震(1933年三陸沖型)の発生頻度の推定,地球惑星科 学関連学会 2002年合同大会講演予稿集, S046-001.
- 地震調査委員会(1999):『日本の地震活動<追補版>』,391pp.
- 地震調査委員会(2000): 『宮城県沖地震の長期評価』, 18pp.
- 地震調査委員会(2001a): 『長期的な地震発生確率の評価手法について』, 46pp.
- 地震調査委員会(2001b): 『南海トラフの地震の長期評価について』, 52pp.
- 地震調査委員会(2002): 『三陸沖から房総沖にかけての地震活動の長期評価について』, 62pp.
- 地震調査委員会(2004):『相模トラフ沿いの地震活動の長期評価について』,58pp.
- 垣見俊弘(1989):固有地震雑考,活断層研究,7,1-4.
- Kanamori, H. (1971a) : Seismological evidence for a lithospheric normal faulting -the Sanriku earthquake of 1933, Phys. Earth Planet. Inter., 4, 289-300.
- Kanamori, H. (1971b) : Focal mechanism of the Tokachi-Oki earthquake of May 16, 1968:Contortion of the lithosphere at a junction of two trenches, Tectonophysics, 12, 1-13.
- Kanamori, H. (1972) : Mechanism of tsunami earthquakes, Phys. Earth Planet. Inter., 6,346-359.
- Kawasaki, I. And Y. Suzuki (1974): Rise time and effective stress estimation from comparison of near-field data with theoretical seismograms in a semi-infinite medium ; the Sanriku earthquakes of March 3, 1933, J. Phys. Earth, 22, 223-236.
- 川崎一朗・浅井康広・田村良明(1998):三陸沖におけるプレート間モーメント解放の時空間分布とサイ スモ・ジオデティック・カップリングー中・長期予測の基礎-,地震2,50.
- Kikuchi, M. and Y. Fukao (1985): Iterative deconvolution of complex body waves from great earthquakes - The Tokachi-Oki earthquakes of 1968, Phys. Earth Planet. Inter., 37, 235-248.
- Kikuchi, M. and Y. Fukao (1987): Inversion of long-period P-waves from great earthquakes along subduction zones, Tectonophysics, 144, 231-247.
- 気象庁(1983):日本付近の地域・海域別の被害地震・津波地震の表および震度分布図. 470pp.
- 気象庁地震予知情報課(2007):1965年以前の地震カタログの改訂と1923年前半の地震カタログの作成, 地震予知連絡会会報,78,5-9.
- 河野幸夫・今村文彦・箕浦幸治(2000): 貞観津波と海底潜水調査, 東北地域災害科学研究, 36, 115-122.
- Kono, Y., F. Murakami, F. Imamura and K. Minoura (2000) : Historical tsunami that occurred 1,100 years ago and underwater diving research, Proceedings of the 4th International Conference on Hydro-Science and - Engineering, Seoul, Korea, September 26-29, 2000, PAP96, 1-10.
- Kosuga, M., T. Sato, A. Hasegawa, T. Matsuzawa, S. Suzuki and Y. Motoya (1996): Spatial distribution of intermediate depth earthquakes with horizontal or vertical nodal planes beneath northeastern Japan, Phys. Earth Planet. Inter., 93, 63-89.
- 箕浦幸治(1991): 東北日本における巨大津波の発生と周期,歴史地震,6,61-76.
- Miura, S., N. Takahashi, A. Nakanishi, T. Tsuru, S. Kodaira and Y. Kaneda (2005) : Structural characteristics off Miyagi forearc region, the Japan Trench seismogenic zone, deduced from a wide-angle reflection and refraction study, Tectonophysics, 407, 165-188.
- Mochizuki, K., T. Yamada, M. Shinohara, Y. Yamanaka and T. Kanazawa (2008) : Weak Interplate Coupling by Seamounts and Repeating M~ 7 Earthquakes, Science, 321, 1194-1197.
- Mori, J. and K. Shimazaki (1983): High stress drops of short-period subevents from the 1968 Tokachi-Oki earthquake as observed on strong-motion records, Bull. Seism. Soc. Am., 74, 1529-1544.
- 室谷智子・菊地正幸・山中佳子(2003):近地強震計記録を用いた 1982 年茨城県沖地震の震源過程、日

本地震学会 2003 年度秋季大会, P029.

- 室谷智子・菊地正幸・山中佳子・島崎邦彦(2004): 1938 年に起きた複数の福島県東方沖地震の破壊過 程(2),日本地震学会 2004 年度秋季大会, P029.
- 永井理子・菊地正幸・山中佳子(2001):三陸沖における再来大地震の震源過程の比較研究-1968年+ 勝沖地震と1994年三陸はるか沖地震の比較-,地震2, 54, 267-280.
- 名古屋大学(2008): 2008 年 5 月 8 日 茨城県沖地震(Mj6.4, 7.0)の震源過程, 地震予知連絡会 報,80,101-110.
- Nishimura, T., S. Miura, K. Tachibana, K. Hashimoto, T. Sato, S. Hori, E. Murakami, T. Kono, K. Nida, M. Mishina, T. Hirasawa, and H. Miyazaki (2000): Distribution of seismic coupling on the subducting plate boundary in northeastern Japan inferred from GPS observations, Tectonophysics, 323, 217-238.
- 西村卓也・三浦哲・立花憲司・橋本恵一・佐藤俊也・堀修一郎・村上栄寿・河野俊夫・仁田交市・三品 正明・平澤朋郎・宮崎真一(1999): 1994 年三陸はるか沖地震の余効変動と三陸沖プレート間カ ップリング,月刊地球,号外,25,152-157.
- Noguchi, S. (2002): Earthquake Clusters in the Kanto and Tokai Subduction Zones : Implications for Modes of Plate Consumption, Seismotectonics in Convergent Plate Boundary, Eds. Y. Fujinawa and A. Yoshida, Terra Scientific Publishing Company (TERRAPUB), Tokyo, 451-467.
- 野口伸一・関口渉次(2001):関東地域のフィリピン海プレートと太平洋プレートの沈み込みと変形,月 刊地球,23,10,733-741.
- Ogata, Y. (1999) : Estimating the hazard of rupture using uncertain occurrence times of paleoearthquakes, J. Geophys. Res., 104, 17995-18014.
- 大竹政和・笠原敬司(1983):茨城県沖地震に見られるペア地震現象,地震2,36,643-653.
- Paterson, E. T. and T. Seno (1984): Factors affecting seismic moment release rates in subduction zones, J. Geophys. Res., 89, 10233-10248.
- 佐藤良輔編著(1989):『日本の地震断層パラメター・ハンドブック』, 鹿島出版会, 390pp.
- Schwartz, D.P. and K.J. Coppersmith (1984): Fault behavior and characteristic earthquake: examples from the Wasatch and San Andreas Fault zones, J. Geophys. Res., 89, B7, 5681-5698.
- Schwartz, D. P. and K. J. Coppersmith (1986): Seismic hazards: new trends in analysis using geologic data in Active Tectonics, National Academy Press, pp. 215-230.
- 島崎邦彦(1986):「太平洋岸の地震危険度(I)」『地震災害予測の研究』地震災害予測研究会,昭和59 年度報告,損害保険料率算定会.
- 菅原大助・箕浦幸治・今村文彦(2001):西暦 869 年貞観津波による堆積作用とその数値復元,津波工 学研究,18,1-10.
- Seno, T. and T. Takano (1989) : Seismotectonics at the Trench-Trench-Trench Triple Junction off Central Honshu, PAGEOPH 129, 27-40.
- Seno, T., T. Sakurai and S. Stein (1996): Can the Okhotsk plate be discriminated from the North American plate?, J. Geophys. Res., 101, No. B5, 11305-11315.
- 瀬野徹三(1993):日本近海のプレート運動と地震,科学,63 ,pp. 711-719 .
- 瀬野徹三(1995):『プレートテクトニクスの基礎』,朝倉書店,190pp.
- 瀬野徹三・森山哲二・高野貴史(1986):海溝三重点付近のサイスモテクトニクス,月刊地球,8,265-270.
- 消防庁(2008):茨城県沖を震源とする地震(確定報),消防庁ホームページ.
- Tanioka, Y., and K. Satake (1996): Fault parameters of the 1896 Sanriku tsunami earthquake estimated from tsunami numerical modeling, Geophys. Res. Lett., 23, 1549-1552.
- 都司嘉宣(1994):歴史上に発生した津波地震,月刊地球,16,2,73-85.
- 都司嘉宣・上田和江(1995):慶長16年(1611)、延宝5年(1677)、宝暦12年(1763)、寛政5年(1793)、 および安政3年(1856)の各三陸地震津波の検証,歴史地震,11,75-106.
- Tsuru, T., J.-O. Park, S. Miura, S. Kodaira, Y. Kido and T. Hayashi (2002) : Along-arc structural variation of the plate boundary at the Japan Trench margin: Implication of interplate coupling, J. Geophys. Res. 107, ESE-11 1-15.
- Umino, N., A. Hasegawa and T. Matsuzawa (1995): sP depth phase at small epicentral distances and estimated subducting plate boundary, Geophys. J. Int., 120, 356-366.
- 海野徳仁・長谷川 昭・松澤 暢(1995):近地 SP 波から求めた 1994 年三陸はるか沖地震の余震の深 さ分布と太平洋プレートの形状.平成6年度文部省科学研究費(総合研究A)研究成果報告書(課

題番号 06306019), 23-37.

- 宇佐美龍夫(1996):『新編日本被害地震総覧』,東京大学出版会,434pp.
- '宇佐美龍夫(2003): 『最新版 日本被害地震総覧[416]-2001』, 東京大学出版会, 605pp.
- 宇津徳治(1982):日本付近の M6.0 以上の地震及び被害地震の表:1885 年~1980 年,東京大学地震研 究所彙報,57,401-463.
- 宇津徳冶(1985):日本付近の M6.0 以上の地震および被害地震の表 1885 年~1980 年(訂正と追加),東 京大学地震研究所彙報,60,639-642.
- 宇津徳治(1999):『地震活動総説』,東京大学出版会,876pp.
- 宇津徳治(2001): 『地震学(第3版)』, 共立出版, 279.
- 渡辺偉夫(1997):1611 年慶長三陸津波と地震について-1896 年明治三陸津波と地震の比較-,津波工 学研究,14,79-88.
- 渡辺偉夫(1998):『日本被害津波総覧(第2版)』,東京大学出版会,238pp.
- 渡邊偉夫(2000):869(貞観11)年の地震・津波と推定される津波の波源域,津波工学研究報告,17, 27-37.
- 渡邊偉夫(2001): 伝承(伝説)から地震・津波の実態をどこまで解明できるかー貞観十一年(869年)の地震・津波を例としてー,第18回歴史地震研究会研究発表会講演要旨集,20.
- Wesnousky, S. G. (1982) : Crustal deformation and earthquake risk in Japan, Ph.D. thesis, Columbia University, 235pp.
- Yamanaka, Y. and M. Kikuchi (2004):Asperity map along the subduction zone in northeastern Japan inferred from regional seismic data, J. Geophys. Res., 109, B07307, doi:10,1029/2003JB002683

参考文献(アルファベット順)

石垣祐三(2007):明治・大正時代の震度観測について-震度データベースの遡及-, 験震時報, 70, 29-49.

- Minoura, K. and S. Nakaya, (1991) : Traces of tsunami preserved in inter-tidal lacustrine and marsh deposits: some examples from northeast Japan, J. Geology, 99, 265-287.
- Minoura, K., S. Nakaya and M. Uchida. (1994) : Tsunami deposits in a lacustrine sequence of the Sanriku coast northeast Japan, Sedimentary Geology, 89, 25-31.
- Minoura, K., F. Imamura, D. Sugawara, Y. Kono, and T. Iwashita, (2001) : The 869 Jogan tsunami deposit and recurrence interval of large-scale tsunami on the Pacific coast of northeast Japan, Journal of Natural Disaster Science, v. 23, no. 2, 83-88.

箕浦幸治(2001):津波災害は繰り返す,まなびの杜,16,4-5.

宇津徳冶(1979):1885 年~1925 年の日本の地震活動-M6以上の地震及び被害地震の再調査-,東京 大学地震研究所彙報,54,253-308.

図の目次

- 図3 微小地震の震源分布等に基づくプレート境界面の推定等深線図
- 図 4-1 三陸沖から房総沖にかけての震央分布及び断面図及びプレート境界の位置(その1)
- 図 4-2 三陸沖から房総沖にかけての震央分布及び断面図及びプレート境界の位置(その2)
- 図5 三陸沖から房総沖にかけての主な地震と主な震源域(地震調査委員会, 1999)
- 図6 1968 年 5 月 16 日の十勝沖地震の各種震源断層モデル
- 図7 1856年8月23日,1931年3月9日,1968年5月16日の十勝沖地震と1896年6月15日の明 治三陸地震の各種震源モデル
- 図8 1968 年 5 月 16 日の十勝沖地震の余震分布(気象庁資料)
- 図9 1968年5月16日の十勝沖地震の震度分布と津波波高分布(地震調査委員会, 1999)
- 図 10 1856 年 8 月 23 日の安政十勝沖地震の震度分布と津波波高分布(羽鳥, 1973)
- 図 11 1763 年 1 月 29 日の宝暦十勝沖地震の震度分布と津波波高分布(羽鳥, 1975b)
- 図 12 1677 年 4 月 13 日の延宝十勝沖地震の震度分布と津波波高分布(羽鳥, 1975b)
- 図 13 1933 年 3 月 3 日の昭和三陸地震と 1896 年 6 月 15 日明治三陸地震の震度分布(地震調査委員会, 1999)
- 図 14 1933 年 3 月 3 日の昭和三陸地震の津波波高分布(地震調査委員会, 1999)
- 図 15 1896 年 6 月 15 日の明治三陸地震の津波波高分布(地震調査委員会, 1999)
- 図 16 1611 年 12 月 2 日の慶長三陸地震の津波波高分布と震度分布(羽鳥, 1975b)
- 図17 1897年8月5日の三陸沖南部海溝寄りの地震の震度分布(中央氣象臺, 1897)
- 図18 1793年2月17日の三陸沖南部海溝寄りの津波波高分布と震度分布及び1793年2月17日と1897 年8月5日の波源域(羽鳥, 1975b)
- 図 19 1793 年 2 月 17 日の地震の震度分布と津波の状況(地震調査委員会, 2000)
- 図 20 1938 年の一連の福島県東方沖地震の震度分布(羽鳥, 1976a)
- 図 21 1938 年 11 月 5 日の福島県東方沖地震の波源域(羽鳥, 1976a)
- 図 22 1677 年 11 月 4 日延宝房総沖地震の津波の高さ(羽鳥, 1975a)
- 図 23-1 バックスリップモデル(Nishimura et al., 2000, Ito et al., 2000)
- 図 23-2 バックスリップモデル(EI-Fiky and Kato, 1999)
- 図 24-1 東北地方の最近の GPS 水平変動ベクトル図(国土地理院資料)
- 図 24-2 東北地方の最近の GPS 上下変動ベクトル図(国土地理院資料)
- 図 25-1 三陸沖から房総沖の震央分布図(1923 年~2008 年 6 月)(気象庁資料)
- 図 25-2 領域 a~領域g の地震活動経過図及び地震回数積算図(気象庁資料)
- 図 25-3 茨城県沖の地震活動(気象庁資料)
- 図 26 BPT 分布による三陸沖北部のプレート間大地震の 30 年確率の時間推移
- 図 27 BPT 分布による三陸沖南部海溝寄りのプレート間地震の 30 年確率の時間推移
- 図 28 BPT 分布による茨城沖の地震の 10 年確率の時間推移
- Appendix 1 茨城県沖の地震の震源位置(気象庁資料)
- Appendix 2 茨城県沖の地震の波形
- (1) 1965 年と 1982 年の遠地地震波形(WWSSN)比較

(2) 2008 年と 1961 年、1965 年、1982 年の近地地震波形の比較(気象庁資料)

(3) 2008 年と 1935 年、1943 年の近地地震波形の比較(気象庁資料)

(4) 1923年、1924年、1938年、1943年の地震の本郷(東京都文京区)での波形記録Appendix3 茨城県沖の地震の震度分布(気象官署相当)(気象庁資料)

図3 微小地震の震源分布等に基づくプレート境界面の推定等深線図

Fの速度構造の断面図 Miura et al. (2005)

図5 三陸沖から房総沖にかけての主な地震と主な震源域(地震調査委員会, 1999)

図6 1968年5月16日の十勝沖地震の各種震源断層モデル

図7 1856年8月23日、1931年3月9日、1968年5月16日の十勝沖 地震と1896年6月15日の明治三陸地震の各種震源断層モデル

1968年十勝沖地震の余震分布

気象庁資料

図8 1968 年 5 月 16 日の十勝沖地震の余震分布(気象庁資料)

1968 年十勝沖地震の震度分布図 [気象庁(1969)による]

図 9 1968 年 5 月 16 日の十勝沖地震の震度分布と津波波高分布(地震調査委員会, 1999)

図 10 1856 年 8 月 23 日の安政十勝沖地震の震度分布と津波波高分布(羽鳥, 1973)

図 11 1763 年 1 月 29 日の宝暦十勝沖地震の震度分布と津波波高分布(羽鳥, 1975b)

図 12 1677 年 4 月 13 日の延宝十勝沖地震の震度分布と津波波高分布(羽鳥, 1975b)

三陸地震の震度分布図 [本多・竹花(1933)から作成] 明治三陸地震の震度分布図 [中央気象台(1896)から作成]

図 13 1933 年 3 月 3 日の昭和三陸地震と 1896 年 6 月 15 日明治三陸地震の震度分布 (地震調査委員会, 1999)

三陸地震による各地の津波の高さ

[宇佐美(1996)から作成]

図 14 1933 年 3 月 3 日の昭和三陸地震の津波波高分布(地震調査委員会, 1999)

明治三陸地震による各地の津波の高さ [宇佐美(1996)から作成]

図 15 1896 年 6 月 15 日の明治三陸地震の津波波高分布(地震調査委員会, 1999)

図 16 1611 年 12 月 2 日の慶長三陸地震の津波波高分布と震度分布(羽鳥, 1975b)

図 17 1897 年 8 月 5 日の三陸沖南部海溝寄りの地震の震度分布 (中央氣象臺, 1897)

図 18 1793 年 2 月 17 日の三陸沖南部海溝寄りの津波波高分布と震度分布及び 1793 年 2 月 17 日と 1897 年 8 月 5 日の波源域(羽鳥, 1975b)

図 20 1938 年の一連の福島県東方沖地震の震度分布 (羽鳥, 1976a)

図 22 1677 年 11 月 4 日延宝房総沖地震の津波の高さ(羽鳥, 1975a)

図 23-1 バックスリップモデル(Nishimura et al., 2000, Ito et al., 2000)

図 23-2 バックスリップモデル(El-Fiky and Kato, 1999)

図 24-1 東北地方の最近の GPS 水平変動ベクトル図(国土地理院資料)

図 25-1 三陸沖から房総沖の震央分布図(1923 年~2008 年 6 月) マグニチュード 4.5 以上、深さ 100km より浅い地震

 ※ 1884年以前は、宇津の世界被害地震の表、1885年~1922年は、宇津の地震カタログを使用。1923年1月~7 月は、気象庁地震予知情報課(2007)を使用。1923年8月以降は気象庁震源カタログを使用。
 ※ 吹き出しは M7.0以上(領域 a 内は M6.7以上)の地震のみ。

図27 BPT分布による三陸沖南部海溝寄りのプレート間地震の30年確率の時間推移

図28 BPT分布による茨城県沖の地震の10年確率の時間推移

67

Appendix 1 茨城県沖の地震の震源位置

各地震の本震・余震分布から、地震発生の時期によって震源の精度に差はあるものの、1923~24 年、1943 年、1961 年、1965 年、1982 年、2008 年の地震は、ほぼ同一の震源域を持っていると考 えられる。

気象庁資料

Appendix2 茨城県沖の地震の波形

(1) 1965 年と 1982 年の遠地波形 (WWSSN)比較

1965年と1982年の地震の波形は類似性が比較的高い。

※上下動波形の比較:赤線は1965年のトレース、青線は1982年のトレースを示す。※枠内の数値は、peak to peak 値

(2) 2008年と1961年、1965年、1982年の近地強震波形の比較

1961、1965、1982年は気象庁1倍強震計(標準定数:水平動の固有周期6秒、減衰定数0.55)の変位記録。2008年は多機能型地震計(水戸)及び95型震度計(東京)の加速度データを2階積分した変位データについて、上記特性を持つフィルターでの処理結果。
 1961年の地震は、他の地震と比較すると類似性が低い。

強震波形比較:水戸地方気象台

EW 成分

(3) 2008 年と 1935 年、1943 年の近地強震波形の比較

強震波形比較:水戸

- ・1943年の波形は、中央気象台式強震計(水平動の固有周期7秒、減衰定数0.33)の変位記録。2008年は多機能型地震計(水戸)の加速度データを2階積分した変位データについて上記特性を持つフィルターでの処理結果。なお、1935年の波形は現存しない。
 ・波形の概形に類似性は見られないものの、NS成分のP波の部分に多少の類似性が見られる。

(※) 中央気象台式強震計記録の最大振幅は、気象庁震源カタログの計算に用いられた値により記載している。 これは、記象紙上の読み取り値について、振動倍率(地震計の固有周期と減衰定数、波形の最大振幅の周 期で決まる)を考慮して求められた値である。(次ページも同様)

強震波形比較:東京

- ・1935、1943年の波形は、いずれも中央気象台式強震計(水平動の固有周期4秒、減衰定数0.28)の変位記録。2008年は95型震度計(東京)の加速度データを2階積分した変位データについて、上記特性を持つフィルターでの処理結果。
 ・2008年と1943年の地震波形の概形は、類似性が高いとみられる。

(4) 1923 年、1924 年、1938 年、1943 年の地震の本郷(東京都文京区)での波形記録

・ 固有周期はNS:8秒、EW:9秒、タイムマークが無いため3cmを1分とした。

1923年6月	2日	2:24、5	:15		
今村式2倍强	崔震計				
地震学教室	35° 4	2' 29''	139°	45'	53''

・1943年の地震波形との類似性はやや低い。

1924年8月15日
今村式2倍強震計
地震学教室

・1943年の地震波形との類似性はやや低い。

1938年5月23日	
今村式2倍強震計	
地震学教室	

・1943年の地震波形との類似性は低い。

1943年4月11日								
今村式2倍	音強震	計						
耐震家屋	35°	42'	35.2''	、	139°	45'	59''	

Appendix3 茨城県沖の地震の震度分布 (気象官署相当)

過去の活動と今回の活動について、震度分布の比較を行った。近年は震度計が各地に展開されているため、単純な比較はできない。このため 2008 年の地震については、全国の震度データのうち 震度計導入以前から震度を観測している気象官署の震度データのみを表示した。

気象庁資料

気象庁資料

※1896年以前の震度は、微 [現在の震度階級の0と1に相当、以下同じ]、弱 [2と3]、強 [4と5弱・5強]、烈 [6と7]の4段階で観測されていた。このため1896年の図では、微を震度1、弱を震度3、強を震度5で表示している。

なお、震度観測の変遷を詳細に検討すると、 1896年には、微(感覚なし)[0]、微(感覚 あり)[1]、弱(弱き方)[2]、弱[3]、強(弱 き方)[4]、強[5弱・5強]、烈[6と7]の 7段階に分けられたものの、1908年まで「弱 と弱(弱き方)」、「強と強(弱き方)」の判断 基準が定義されていなかったことから、これ らの区別は1896年から徐々に浸透し、1925 年頃からほぼ適切になったと思われる。明 治・大正時代の震度分布図を比較する場合は、 上記について留意する必要がある。

<付録>

三陸沖から房総沖にかけての地震活動については、地震調査研究推進本部地震調 査委員会(2002)により、それまで行われていた調査研究に基づいた長期評価が公 表されているが、その長期評価において茨城県沖で発生が想定されていた地震が平 成20年5月8日に発生したため、今回の地震についての解析結果等を基に当該領域 の地震活動について検討を行い、一部改訂版としてとりまとめた。

以下に改訂となった項目とその値について、前回の評価と今回の評価の対比表を 示す。なお、評価にあたっては、下表に示す数値のほか各値を求めた根拠について も改訂していることに留意されるとともに、その詳細については評価文を参照され たい。

ス級朱汗の地展の計画についての利益対比及						
		前回の評価	今回の評価			
		(平成 14 年 7 月 31 日公表)	(平成21年3月9日公表)			
発生確率	今後10年以内	50%程度(ポアソン)	ほぼ0%~0.2% (BPT)			
	今後20年以内	70%程度(ポアソン)	50%程度(BPT)			
	今後30年以内	90%程度(ポアソン)	90%程度以上(BPT)			
次の)地震の規模	M6.8程度	M6. 7~M7. 2			
		15.5年(1940年以降の過去62	21.2年(1923年、1943年、1965			
平均発生間隔		年間に M6.7 以上の地震の発生	年、1982年、2008年に発生した			
		は4回)	地震について、算術平均で求め			
			た)			

茨城県沖の地震の評価についての新旧対比表